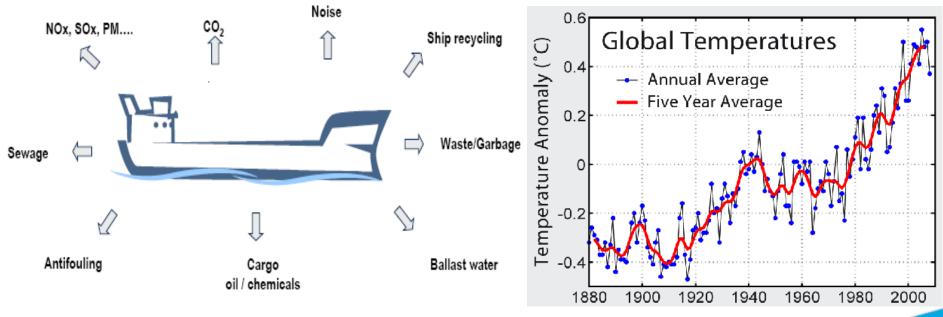


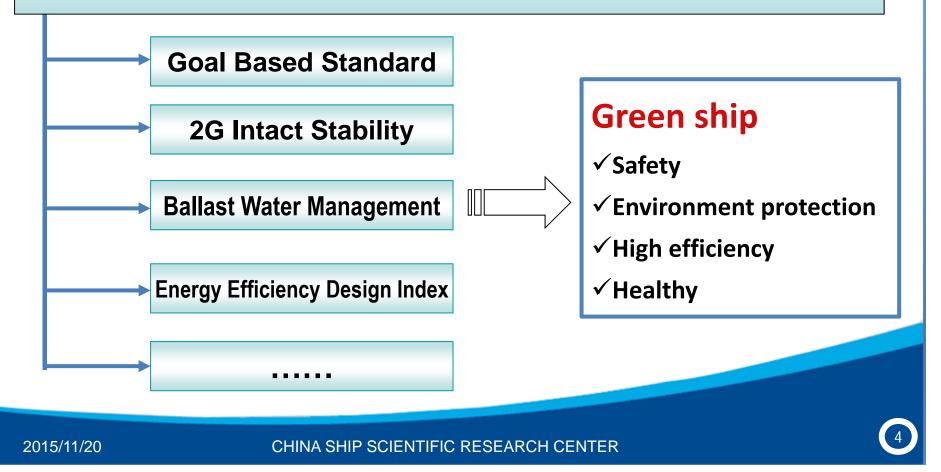
Advances in EEDI Research

November 2015

2015/11/20



- 1. Background
- 2. Application of ISO15016:2015
- 3. Research on Coefficient f_w
- 4. Research on Minimum Propulsion Power
- **5. Topics of Future Research**


Shipping is the primary means of transport world widely. But now, more and more serious environmental pollution problems from ships have been the focus of attention.

Pollutants Released by Ships

IMO put forward a series of new conventions, new codes and new standards for energy saving and emission reduction

Solution to IMO EEDI rules in China:

- EEDI verification
- Application of ISO15016:2015
- Coefficient of decrease of ship speed (fw)
- Minimum Propulsion Power

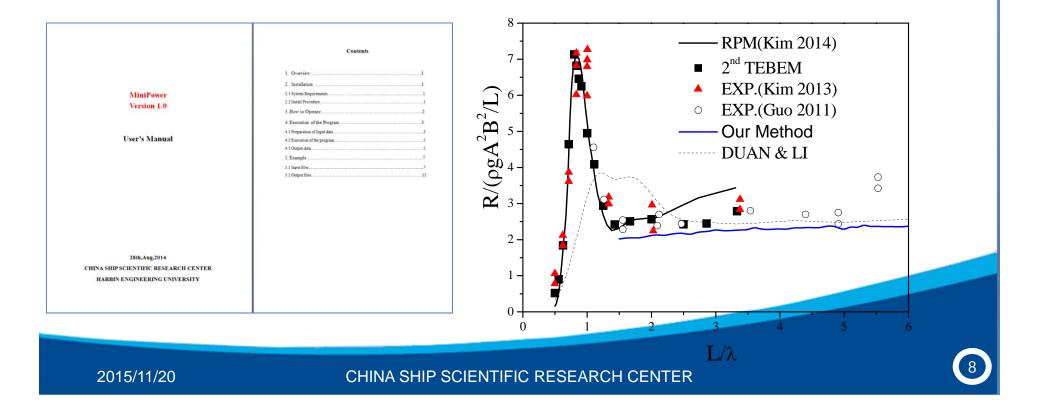
1. Background Software platform for EEDI survey and evaluation Website: www.eedi.org.cn EEDI 验证评估软件平台 平台简介 网站导航 首页 联系我们 帮助中心 意见反馈 EEDI计算模板 设计预验证服务 根据IMO暂行EEDI公式计算EEDI值。 根据初步设计结果和船模试验结果,验证EEDI是否合格。 EEDI计算模板 🔛 EEDI设计预验证(模型试验方法) \diamond 试航验证服务 fw预报服务 根据实船试航的结果,验证EEDI是否合格。 提供船舶失速系数的数值预报方法。 日本fw计算方法 📎 EEDI航速修正计算方法 702所fw计算方法

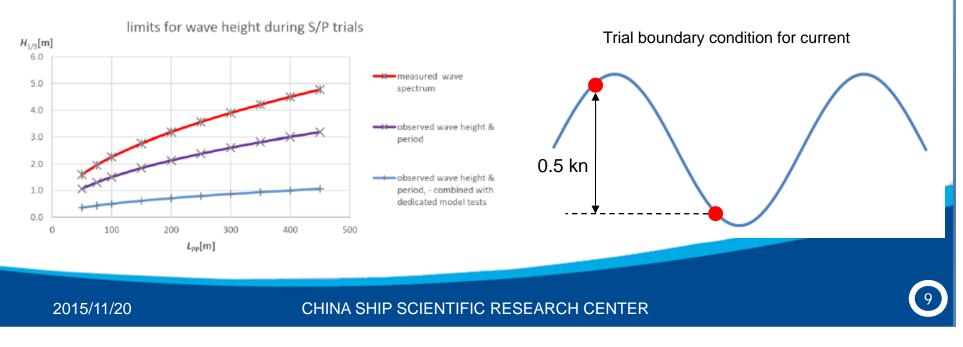
2015/11/20


CHINA SHIP SCIENTIFIC RESEARCH CENTER

6

Software(shipfw) for the prediction of f_w


- Wave added resistance by strip method
- > Wind resistance by empirical method
- Influence on propulsion efficiency by propeller load change


Tools for the assessment of minimum power

- Software for the assessment of minimum propulsion power
- Computational method for added resistance in short waves

- In MEPC 68, it was agreed that the use of ISO15016:2015 to ships for which the speed trial is conducted on or after 1 September 2015.
- Various restrictions on speed trial, especially on the environmental conditions during the speed trial, were newly added into ISO15016:2015.

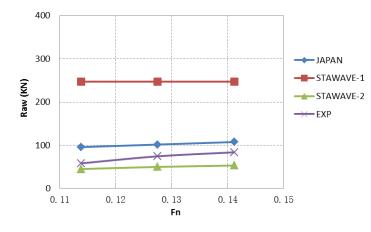
Comparison of different speed correction method

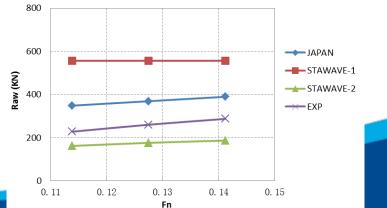
No.	Ship	V _{ref} from ISO 15016:2002	V _{ref} from ISO 15016:2015	Deviation
1	64000DWT BC	13.87 kn	13.76 kn	- 0.11 kn
2	82000DWT BC	13.80 kn	13.66 kn	- 0.14 kn
3	82000DWT BC	13.81 kn	13.50 kn	- 0.31 kn

Run No.	Power setting	Heading [deg]	Relative wind direction [deg]	Relative wind speed [m/s]	Significant wave height [m]	Relative wave direction [deg]
1	50%	180	327	5.4	0.7	84
2	50%	0	19	9.3	0.7	-96
3	75%	0	17	9.1	0.7	-96
4	75%	180	329	7.3	0.7	84
5	85%	180	332	9.4	0.7	84
6	85%	0	20	9.1	0.7	-96
7	100%	0	27	9.6	0.7	-96
8	100%	180	333	11.7	0.7	84

➢ For No.3 example, wave direction in not from head (within 0 to ±45°)

2015/11/20


Comparison of different calculation method for R_{AW}


• 320,000 DWT VLCC

Sea state: BF5 **EXP** JAPAN **STAWAVE-1 STAWAVE-2** Fn 0.1139 228 349 556 162 0.1275 369 556 260 176 0.1412 287 390 556 187

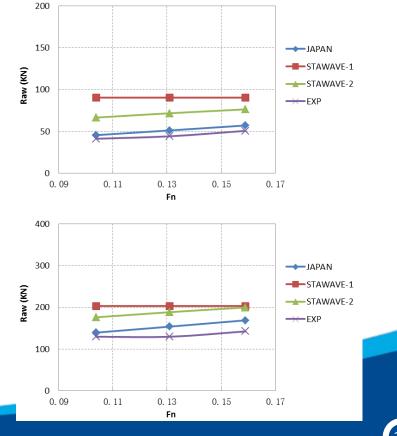
Sea state: BF6

Fn	EXP	JAPAN	STAWAVE-1	STAWAVE-2
0.1139	228	349	556	162
0.1275	260	369	556	176
0.1412	287	390	556	187

CHINA SHIP SCIENTIFIC RESEARCH CENTER

11

• Comparison of different calculation method for R_{AW}


82,000 DWT Bulk Carrier

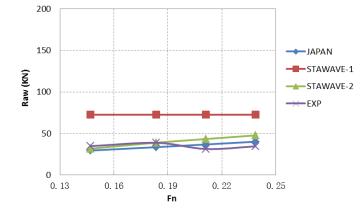
Sea state: BF5

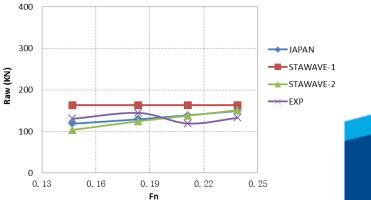
Fn	EXP	JAPAN	STAWAVE-1	STAWAVE-2
0.1039	41	46	90	67
0.131	44	51	90	72
0.159	51	57	90	76

Sea state: BF6

Fn	EXP	JAPAN	STAWAVE-1	STAWAVE-2
0.1039	130	140	203	176
0.131	130	154	203	188
0.159	143	169	203	200

• Comparison of different calculation method for R_{AW}


8,800TEU Container Ship


Sea state: BF5

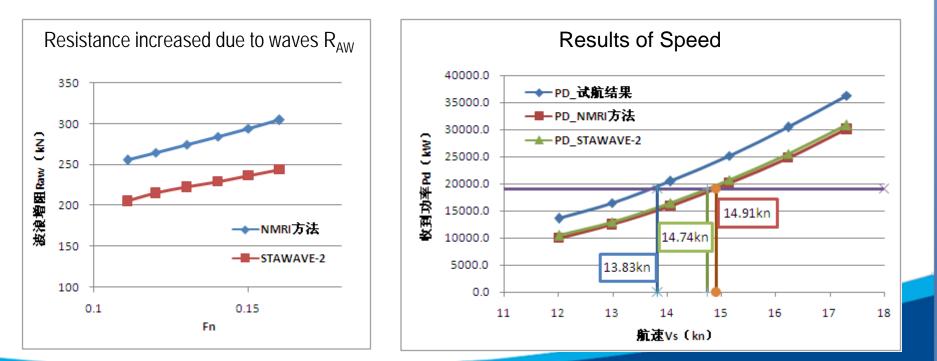
Fn	EXP	JAPAN	STAWAVE-1	STAWAVE-2
0.1469	35	29	73	32
0.1836	39	34	73	39
0.2112	31	37	73	43
0.2387	35	40	73	48

Sea state: BF6

Fn	EXP	JAPAN	STAWAVE-1	STAWAVE-2
0.1469	130	119	163	104
0.1836	145	129	163	124
0.2112	119	139	163	138
0.2387	133	149	163	151

CHINA SHIP SCIENTIFIC RESEARCH CENTER

13



• Influence on Speed by different calculation method for R_{AW}

- 298,000DWT VLCC >
 - NMRI Method: 14.91 kn

Deviation: 0.17 kn

STAWAVE-2: 14.74 kn

2015/11/20

Derivation of load variation coefficients

 $V_{\rm S}$ = 14.0 knots

V₈ = 16.0 knots

 $V_8 = 14.0 \text{ knots}$: $\xi_n = 0.25$

 $V_{\rm S} = 15.0$ knots : $\mathcal{E}_n = 0.24$

 $V_{\rm S}$ = 16.0 knots : ξ_n = 0.25

Vs = 15.0 knots

0.06

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.1 -0.05 0 0.05

 $\Delta P_{\rm D}/P_{\rm Di}$

 $\Delta n/n_{id}$

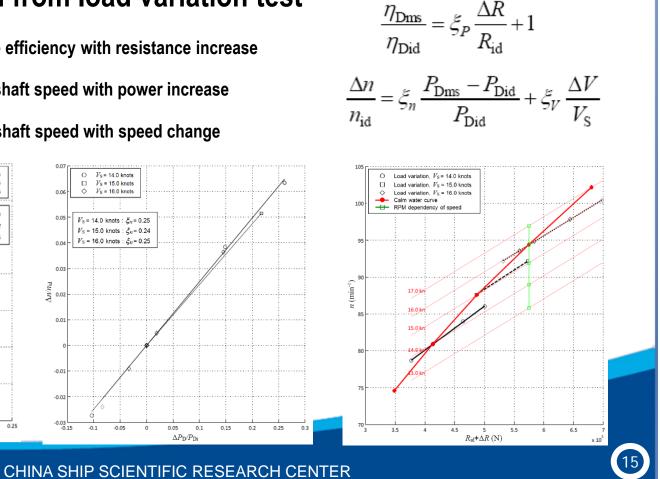
- $\epsilon_{\rm P}, \epsilon_{\rm n}, \epsilon_{\rm V}$ Derived from load variation test
 - ϵ_P : Dependency of propulsive efficiency with resistance increase
 - $-\epsilon_n$: Dependency of propeller shaft speed with power increase
 - $-\epsilon_{v}$: Dependency of propeller shaft speed with speed change

O V₂ = 14.0 knots

Vs = 15.0 knots

V_S = 16.0 knots

Vs = 14.0 knots : Ep = -0.189


 $V_{\rm S}$ = 15.0 knots : ξ_P = -0.182

Vs = 16.0 knots : ŽP = -0.174

0.15

0.2

0.25

-0.05

0

0.05

 $\Lambda R/R_{id}$

0.1

1.02

1.01

0.9

0.96

0∥∕su

Derivation of load variation coefficients

- It is found that those three coefficients can not be derived from model test report provided by any tank test organization directly, and also can not be calculated based on the data from the model test report.
- It is necessary to develop reference values for those three coefficients, and the universality of the reference values should be demonstrated.

Conclusion

- ship condition, environmental condition and restriction of correction method should be paid extra attention to when speed trial is planned based on ISO15016:2015.
- It is unreasonable that only resistance increased due to head waves can be corrected, new method considering resistance increased due to following waves should be developed.
- Develop reference values for load variation coefficients.

3. Research on Coefficient f_w

Ε

Computational Method for f_w proposed by China

• Total resistance in the representative sea condition : R_{TW}

$$R_{Tw} = R_T + \Delta R_{wind} + \Delta R_{wave}$$

•Added resistance due to waves :

 ΔR_{wave}

$$\Delta R_{wave} = 2 \int_0^\infty \frac{R_{wave}(\omega)}{\zeta_a^2} \cdot S_{\zeta}(\omega) d\omega$$

1

$$R_{wave} = R_{wm} + R_{wr}$$

Combined method

$$R_{wm} = \frac{k\cos\alpha}{2\omega_e} \int_L b'(x) V_{za}^2 dx_b$$

More details refer to DUAN & LI(2013) and MEPC65/4/11

Radiated energy method

$$=\overline{F_x} = \frac{\rho g \zeta_a^2}{2} (a + \frac{4b\omega V}{g} + 2c(\frac{\omega V}{g})^2) \cdot \alpha_d \quad \text{DSG method}$$

MARINE ENVIRONMENT PROTECTION MEPC 65/4/11 COMMITTEE 7 March 2013 65th session Original: ENGLISH Agenda item 4 AIR POLLUTION AND ENERGY EFFICIENCY Considerations on the interim guidelines for the calculation of the coefficient f_{m} or for decrease in ship speed in a representative sea condition Submitted by China SUMMARY Executive summary: This document comments on Part 1 of the interim guidelines for the calculation of the coefficient f_w for decrease in ship speed in a representative sea condition for trial use (MEPC.1/Circ.796), and proposes new draft fw simulation guidelines based on a new method of wave added resistance to provide an alternative method for the simulation of f Strategic direction: 7.3 High-level action. 7.3.2 7.3.2.1 Planned output Action to be taken: Paragraph 15 MEPC 62/5/3. MEPC 62/5/16: MEPC 63/23: MEPC 64/4/7 Related documents: MEPC 64/4/28; MEPC 62/INF.21 and MEPC.1/Circ.796

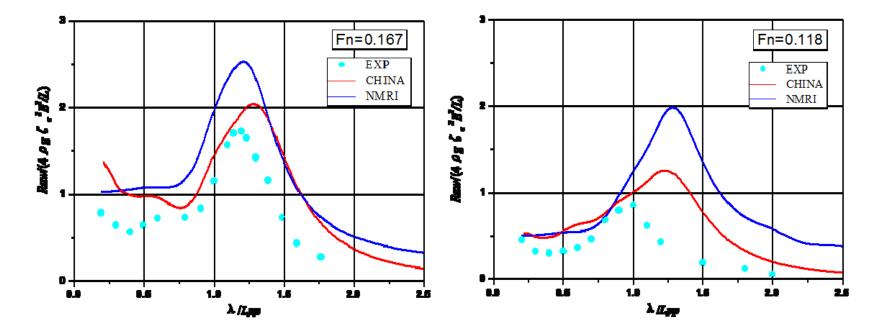
MARITIME

Background

1 MEPC 63 adopted the 2012 Guidelines on the method of calculation of the attained Energy Efficiency Design Index (EED) for new ships by resolution MEPC.212(6) (nereinafter referred to as "EED) calculation guidelines"). The coefficient *t_w* is retained in the EED calculation formula for voluntary application. MEPC 64 approved the interim guidelines for the calculation of the coefficient *t_w* is for decrease in ship speed in a representative sea condition for trial use, which was circulated by MEPC.1/Crc.796.

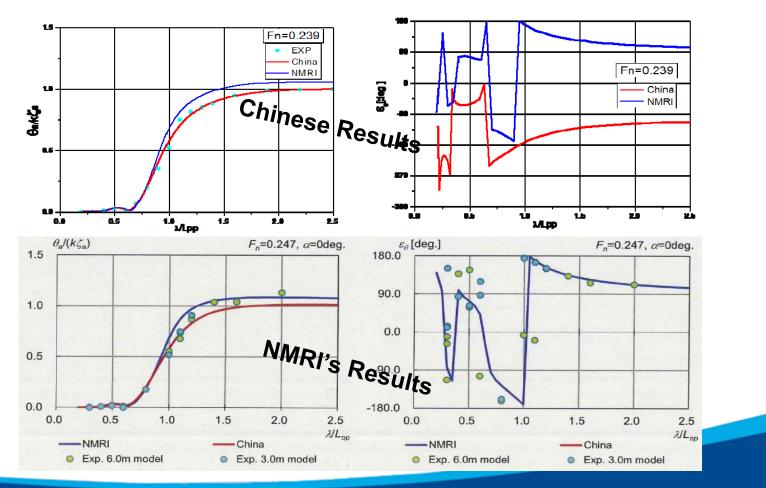
2 China has carried out a series of model tests and numerical calculations on coefficient f_w simulation method and considers that there are some uncertainties in the calculation method of f_w in Part 1 of the interim f_w guidelines. China is of the view that the simulation and calculation methods of f_w should be technically robust although f_w is only a voluntary coefficient. Therefore, China makes some improvements in the following aspects

I:WEPC\65\4-11.doc


 R_{wr}

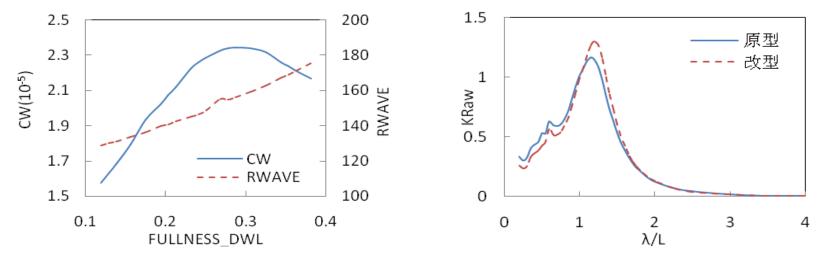
SUSTAINABLE DEVELOPMENT 3. Research on Coefficient f_W

Added resistance comparison



3. Research on Coefficient f_W

Motion comparison


2015/11/20

3. Research on Coefficient f_w

Hull Form Optimization for f_w

fw optimization based on a multiple target hull form optimization system developed by CSSRC

3. Research on Coefficient f_W

Conclusion

- It's very important for ship design to predict the decrease of ship speed in real sea, f_w has become the current hot issue.
- China proposed a new combined method to calculate added resistance in waves, and this new method has good agreement with model test.
- Model test of added resistance in short waves is different to conduct, so we suggest that: larger ship model may be a appropriate way to solve it.
- There exists many methods to improve the performance of ships in representative sea condition.

4. Research on Minimum Propulsion Power Hot Issues at the IMO Interim Guidelines Amend definition MSC-MEPC.2/Circ.11 2012 of "Adverse conditions" 2013 Interim Guidelines Resolution MEPC.232(65) 2013 Extend the scope of application: Amendments to the 2013 Interim Guidelines Phase 0 to Phase 1 Resolution MEPC.255(67) 2014 Amend criteria line Amendments to the 2013 Interim Guidelines. for Level 1 as amended assessment 2015 Resolution MEPC.262(68)

Utilization of the concept of weather factor "fw"

utilization of the concept of weather factor "fw"

While the present Interim Guidelines contain two assessment levels, an alternative approach could be warrant for consideration. In this respect, attention should be paid to the Interim Guidelines for the calculation of the coefficient f_w for decrease in ship speed in a representative sea condition for trial use (MEPC.1/Circ.796). In accordance with these Interim Guidelines, the weather factor f_w may be obtained for representing ship speed reduction in the actual sea condition, that is BF=6. It might be possible that this concept could be utilized as an alternative to the level 2 Criterion in the Interim Guidelines. To be more concrete, if we are able to extend/modify the concept of f_w to correspond to the "adverse condition" to be developed in accordance with the previous sentence, and this extended/modified factor of a specific ship in adverse condition results in more than zero, this would mean that that ship may be considered as it has the manoeuvrability in that adverse condition as it at least has a advancing speed. In this way, the analogy of f_{w} concept could be employed as an alternative for level 2 assessment method.

• Summary of the 2013 Interim Guidelines

Level-1 assessment by minimum power lines

Installed propulsion power (total main engine output) is not to be less than the specified value calculated using formula as a function of deadweight for each ship type. If a ship does not satisfy the level-1 criteria, level-2 assessment is to be considered.

Level-2 simplified assessment by indirect assessment

Level-2 simplified assessment is an indirect assessment procedure based on an assumption that, in the following adverse condition, if a ship has sufficient installed power to move with a certain advance speed in head waves and wind, and if it is lower than the torque limit within the operating range of the installed engine, the ship can also be expected to maintain course in waves and wind from any other direction.

Ship length Lpp (m)	Significant wave height (m)	Peak wave period (s)	Mean wind speed (m/s)			
Lpp<200	4.0		15.7			
200≦Lpp<250	*	7.0 to 15.0	*			
Lpp≧250	5.5		19.0			
* Linearly interpolated depending on ship's length						
2015/11/20 CHINA SHIP SCIENTIFIC RESEARCH CENTER						

Level-1 Assessment(Minimum Power Lines)

Minimum Power Line Value = $a \times (DWT) + b$

where:

DWT is the deadweight of the ship in metric tons; and *a* and *b* are the parameters given in table 1 for tankers, bulk carriers and combination carriers.

Before MEPC 68

Table 1: Parameters a and b for determination of the minimum power line values for the different ship types

Ship type	a	b
Bulk carrier	0.0687	2924.4
Tanker	0.0689	3253.0
Combination Carrier	see tanker abov	

After MEPC 68

Table 1: Parameters a and b for determination of the minimum power line values for the different ship types

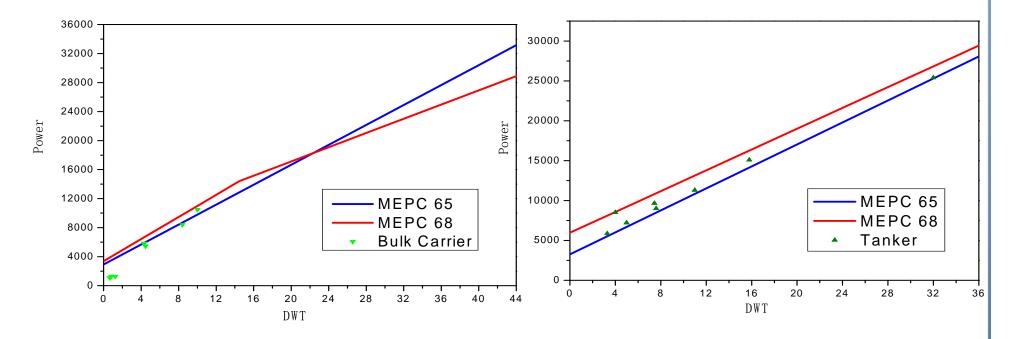
Ship type	a	b
Bulk carrier which DWT is less than 145,000	0.0763	3374.3
Bulk carrier which DWT is 145,000 and over	0.0490	7329.0
Tanker	0.0652	5960.2
Combination carrier	see tank	er above

Level-1 Assessment(Minimum Power Lines)

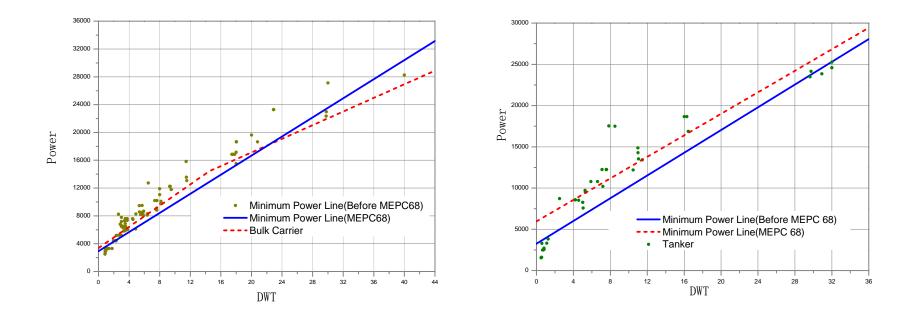
Deadweight	Bulk Car	difference	
	Before MEPC 68	MEPC68	Bulk Carrier
20000	4298.4	4900.6	14.01%
40000	5672.4	6426.6	13.30%
60000	7046.4	7952.6	12.86%
80000	8420.4	9478.6	12.57%
100000	9794.4	11004.6	12.36%
150000	13229.4	14679	10.96%
200000	16664.4	17129	2.79%
240000	19412.4	19089	-1.67%
320000	24908.4	23009	-7.63%

2015/11/20

Level-1 Assessment(Minimum Power Lines)


Deadweight	Tanke	difference	
Deadweight	Before MEPC 68	MEPC68	Tanker
20000	4631	7264.2	56.86%
38000	5871.2	8437.8	43.72%
60000	7387	9872.2	33.64%
80000	8765	11176.2	27.51%
100000	10143	12480.2	23.04%
140000	12899	15088.2	16.97%
180000	15655	17696.2	13.04%
220000	18411	20304.2	10.28%
320000	25301	26824.2	6.02%

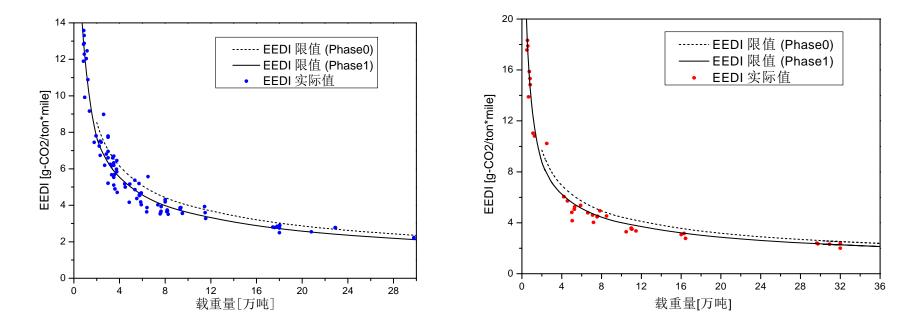
Level-1 Assessment(Minimum Power Lines)



New Ships: All of the 7 bulk carriers and 8 tankers can not satisfy the Level-1 assessment

2015/11/20

Level-1 Assessment(Minimum Power Lines)

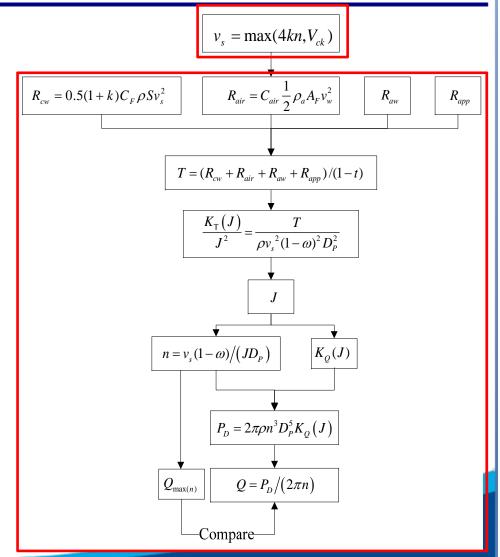


✓Old Ships: Many small ships and large scale tankers can not satisfy the Level-1 assessment.

Level-1 Assessment and EEDI Calculation

✓ Ships from EEDI data base: The great majority can not satisfy the EEDI Phase 1, especially for large scale ships.

2015/11/20



Level-2 Assessment

The assessment consists of two steps:

1.Definition of the required advance speed(Vs),ensuring course-keeping in all wave and wind direction;

2.Assessment whether the installed power is sufficient to achieve the required advance speed in head wind and waves.

38000DWT Chemical Tanker

	Lpp		177.000	m
Main Parameters	Tm		11.100	m
	Bwl		32.000	m
	submerged lateral area for breadth effect		3570.124	m²
	rudder area (AR)		30.940	m ²
Level-1 Assessment	Time	REQUIRE POWER	S.M.C.R	Satisfy?
	Before MEPC68	6009.0		Yes
	MEPC68	8568.2	7610	No

2015/11/20

38000DWT Chemical Tanker

K _T (J)/J ²	8.150	-	
J	0.196	-	
n	1.173	rps	67.70%
K _Q (J) (see open water results)	0.037	-	
P _D	3822.776	kW	
Ps	3900.792	kW	51.26%

Conclusion: the required minimum power is less than engine SMCR, but restricted by the torque-speed limitation curve ,this ship can not satisfy the Level-2 assessment.

Conclusion

It's very important for shipyard and ship-owner to know whether their ships satisfy the minimum propulsion power assessment.

 Studies conducted by CSSRC indicate that many small ships and large scale tankers can not satisfy the Level-1 assessment, especially the new ships.

 The 2013 Interim Guidelines exists many problems, China will conduct more research to proposed an reasonable assessment guidelines.

5. Topics of Future Research

EEDI Verification & ISO 15016:2015

- influence of environmental parameters on ship speed
- > calculation method for R_{AW} considering following waves
- reference values for load variation coefficients

Coefficient f_w

Iarger scale ship model test to analyze added resistance in short waves

Minimum Propulsion Power

Level-3 assessment method

Your true partner in maritime

THANKS FOR YOUR ATTENTION!

EMAIL: zhouwx@cssrc.com.cn

http://www.cssrc.com.cn