Practice of Cyber Security Management System on Cargo Ship

October 2018
Cyber security is the premise
IMO: Guidelines On Maritime Cyber Risk Management (MSC-FAL.1-Circ.3)

Encourage Administrations to ensure that cyber risks are appropriately addressed in safety management systems no later than the first annual verification of the company's Document of Compliance after 1 January 2021

Recommendation

KPI

- OCIMF: TMSA3, VIQ7
- RightShip: checklists
- Tanker
- Bulk Carrier

they need to be satisfied by company & ship or ships will lose shipping qualification

de facto standard
OCIMF Requirements

- TMSA·Ch.13 Maritime Security for company including cyber security
 - establish and maintain policies and procedures
 - identify the risk – risk assessment
 - respond and mitigate the identified risk

- VIQ·Ch.7 Cyber Security for ships
 - policy & procedure: risk assessment, cyber response plan onboard
 - physical access control: USB/RJ45 ports
 - guidance on use of personal devices onboard
 - active promotion: training, instruction on safeguarding

Tanker
RightShip Requirements

✓ documented software/firmware and hardware maintenance procedures
 ○ service report, available

✓ cyber security procedures
 ○ risk assessment, completed
 ○ response plan, available

✓ cyber security training

Bulk Carrier
Summary of Requirements

IMO/OCIMF/Rightship

Risk Assessment → Risk Control → Security Plan Contingency Plan

Manual/Policy Procedure/Process Instruction/Record

This is a systematic project !!!

Management, Technology, Personnel
Puzzle/Difficulty of Shipping Company

- Existing safety management system is mature based on ISM rules
- But cyber security management is basically blank
- Necessary to incorporate cyber security into the existing management system
- It is a *new* issue and challenge
- Don’t know how to do, *too professional*
- Need professional to provide guidance and supporting service
Our Practice

Cooperate with several shipping companies

- Plan and design a cybersecurity management system
- Integrate it into the existing management system

Sustainable improvable management system
Six Steps

1. Develop policy
2. Specify Scope
3. Risk Assessment
4. Risk Treatment
5. Risk Control
6. Prepare SOA

Measure

Improve

Operate

Needs & Expectations

Security
Result: Management Files

<table>
<thead>
<tr>
<th>NO.</th>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shipboard cybersecurity management manual</td>
<td>New Policy, Organization, Responsibilities</td>
</tr>
<tr>
<td>2</td>
<td>Procedure for Shipboard cyber risk management</td>
<td>New Personnel, Asset, Risk Assessment, Contingency, Measurement</td>
</tr>
<tr>
<td>3</td>
<td>Procedure for control of documentations</td>
<td>Rev. Add content of cyber security</td>
</tr>
<tr>
<td>4</td>
<td>Procedure for control of records</td>
<td>Rev. Add content of cyber security</td>
</tr>
<tr>
<td>5</td>
<td>Procedure for Information Communication</td>
<td>Rev. Add content of cyber security</td>
</tr>
<tr>
<td>6</td>
<td>Procedure for corrective action and preventive action</td>
<td>Rev. Add content of cyber security</td>
</tr>
<tr>
<td>7</td>
<td>Procedure for carrying out internal audits</td>
<td>Rev. Add content of cyber security</td>
</tr>
<tr>
<td>8</td>
<td>Procedure for management review</td>
<td>Rev. Add content of cyber security</td>
</tr>
<tr>
<td>9</td>
<td>Procedure for Change Management</td>
<td>Rev. Add content of cyber security</td>
</tr>
<tr>
<td>10</td>
<td>Procedure for procurement, outsourcing and suppliers management</td>
<td>Rev. Implement the third party access strategy</td>
</tr>
<tr>
<td>11</td>
<td>Instruction for shipboard cyber risk assessment</td>
<td>New Assignment of asset, threat, vulnerability and risk</td>
</tr>
<tr>
<td>12</td>
<td>Instruction for maintenance and use of shipboard cyber asset</td>
<td>New Network device, IT Computer, OT Computer, Personal device, USB port, etc.</td>
</tr>
<tr>
<td>13</td>
<td>Instruction for ship cyber response drill</td>
<td>New Drill of shipboard only, or joint of ship-shore</td>
</tr>
<tr>
<td>14</td>
<td>Ship cyber response plan</td>
<td>New Shipboard (each), shore-base, respective</td>
</tr>
<tr>
<td>15</td>
<td>Ship cybersecurity risk assessment report</td>
<td>New Assessment Report (each ship)</td>
</tr>
</tbody>
</table>

Levels:
- **1st level**: Programmatic documents / manuals
- **2nd level**: Procedure / Provision
- **3rd level**: Instruction/Specification
- **4th level**: Records, Report/Plan

4 level Management System Files
Finding 1: Network status onboard

- IT and OT are not so clear
- Based on convenience, some OT system, such as ECR monitoring, will be designed to be monitored remotely from IT networks or shore-side, and the connection to shore-side will pass through IT networks.
- Some standalone OT system may also be indirectly connected via USB
- Based on cost saving, IT computers may connect directly to the Internet via a 4G network card or mobile phone during a coastal voyage or berthing.
Finding 1: IT & OT Converge/Mingle

IT/OT Mingle
More direct, integrated, efficient

Risk

Finance
Reputation

Events + Life, Property, Environment

IT

Data

OT

Communication

Email system
Administrative system
Crew welfare system
Planned Maintenance System

ECDIS
Integrated control
Monitor and alarm
CCTV

sense, alarm, operate

IT

analysis
Finding 2: Management Vulnerability

General

- Cyber security management is basically blank
- Rely on established conventions and personal abilities
- Contingency is not considered

Keypoints

- No formal released cybersecurity management system
- Organizational structure not perfect and responsibilities are not clear
- Construction & delivery management not perfect
- Asset management not perfect
- No uniform operation and maintenance specification
- Security and malware prevention management is not perfect
- Change management not perfect
- Emergency preparation not perfect

Responsibilities rely on established conventions
Rely on builder & supplier
No asset inventory onboard
Rely on personal abilities of administrator
No rules for access control and upgrade maintenance
No verification of ECDIS map update
No local backup and configuration files
Finding 3: Technology Vulnerability

- **General**
 - Hardware and software, virus defense, etc. not timely updated
 - Protection measures simple, security foundation weak
 - IT&OT converge/mingle, expand cyber-attack-surface
 - No contingency preparedness, lack of response to events, self rescue ability

- **Keypoints**
 - OT network segment measures not perfect
 - No redundancy in key equipment / function
 - Lack of monitoring & checking for network configuration strategy
 - Lack log of network configuration change, especially firewall & IMARSAT
 - Lack external source limitation of remote access
 - No limitation of personal computer access
 - Weak passwords are common
 - Undistinguished privileges and ordinary accounts
 - Uncontrolled software installation
 - System upgrade and virus database update are not in time
 - Lack control of USB Ports
 - OT computer lack of virus protection
 - IT computer lack local backup
 - No configuration file
Finding 4: Personnel Vulnerability

- General
 - Lack awareness of cyber security
 - Unfamiliar with operation, easy lead to misoperation or omission

- Keypoints
 - Responsibilities not clear, especially between shipboard and shore-side, rely on the established convenience
 - Lack of systematic training and/or guidance on cyber security, lack awareness, especially the risks posed by network threats.
 - Some business systems have no operational specification and rely on personal capabilities, easy lead to misoperation or omission
 - When leaving job, there is no specific provision for the recovery of network system resources / rights
Proposal 1: Management Organization

Executive Level
- Master
- Second Officer
- E-T Officer
- Comm. & Nav. Superintendent
- Electrical Superintendent

Decision-making Level
- Security Council
- Management Level
- Ship Security Team
- Department Head
- Ship Superintendent
- Shipboard Administrator
- Security Administrator
- Shore-based Administrator

General Manager
- Management Representative

Management Organization
Proposal 2: Establish Security Policy

- **General Policy:** Integration of management and technology, full participation and continual improvement

- **Specific Policies:**
 1. Information exchange
 2. Information backup
 3. Network monitoring
 4. Information resources confidentiality
 5. Change management
 6. Password control
 7. Email
 8. Mobile code and virus prevention
 9. Information security outside the site
 10. Physical access
 11. Access control
 12. Third party access
 13. Employee access
 14. Clean desktop and clear screen
 15. Privileged account management
 16. Capacity management
 17. Network configuration
 18. Equipment and cable security
Proposal 3: Cyber Event Classification

- Ship Cyber Event: Emergencies involving damage to ship cyber assets (software, hardware and data), impairment of normal ship operations and even damage to ship safety
 - Accident: an event that causes damage to ship, property, life or environment
 - Major Near-Miss: an event that affects the normal operation of an OT system and may develop into an accident and require immediate measures to control, mitigate, and eliminate
 - Near-Miss: an event that affects the normal operation of the IT system, and other event besides accident and major Near-Miss.

Compatible with Event Classification of ISM
So that it can integrate with the existing security management system
Proposal 4: Risk Assessment Model

Asset Value

<table>
<thead>
<tr>
<th>ID</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>Not very important may cause a small loss after the destruction of its security properties, and the IT system will be temporarily interrupted.</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>More important may cause a moderate loss after the destruction of its security properties, and the OT system is temporarily interrupted.</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>Very important may cause a serious loss after the destruction of its security properties, and the network system can not be recovered.</td>
</tr>
</tbody>
</table>

Threat Value

<table>
<thead>
<tr>
<th>ID</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>Unlikely Once over 2 years; happen only in very rare and exceptional cases</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Possible Once per 2 years in average; or confirmed to have happened.</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>Likely Once or more times per 1 year in average; or in most cases unavoidable</td>
</tr>
</tbody>
</table>

Vulnerability Value

<table>
<thead>
<tr>
<th>ID</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>Robust hard to be threatened</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Vulnerable difficult to be threatened</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>Very Vulnerable easy to be threatened</td>
</tr>
</tbody>
</table>

Risk Factor

\[
\text{Risk Factor} = \text{Asset} \times \text{Threat} \times \text{Vulnerability}
\]

Risk Value

<table>
<thead>
<tr>
<th>ID</th>
<th>Risk Factor</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12<=R<=27</td>
<td>Control must be included in the risk treatment plan</td>
</tr>
<tr>
<td>2</td>
<td>7<=R<=11</td>
<td>Discuss whether to accept or not, and include unacceptable risks in risk treatment plans.</td>
</tr>
<tr>
<td>1</td>
<td>1<=R<=6</td>
<td>After confirmation by the person in charge, accepted without further treatment</td>
</tr>
</tbody>
</table>
Proposal 5 : Access Control

- **Physical Access**
 - Setting up the cyber security area
 - Approval, check in, and accompany visitors

- **Remote Access**
 - Necessary to be approved
 - Restrict remote access source point
 - Mutual recognition should be made at the beginning and end
 - Appropriate monitoring during remote access to prevent unauthorized operation, best to have an action log.
Proposal 6: Anti-Virus

- Shipboard Server + Anti-Virus Clients
 - to solve the limitation of external communication bandwidth
 - server gets the update package (external communication)
 - anti-virus client is installed on the computer
 - server distributes package to anti-virus clients (inner communication)

- USB/RJ45 ports control
 - Technical measure
 - Anti-virus clients also in charge of control of physical ports such as USB.
 - Only specific devices such as mouse, keyboard, allowed to be connected;
 - Lock USB storage devices, such as U-Disk, mobile phone, so that it can not be used even if physically connected, unless authorized by administrator.
 - Physical measure
 - Lock up with signature seal (dated) or physical lock
Proposal 7 : Contingency Preparedness

- **Asset Inventory + Responsible**
 - Require builders to cooperate to develop asset inventory when delivery
 - Each asset (network equipment, IT computer, OT computer, etc.) specifies user and maintainer.

- **Configuration file + Operating Specification**
 - develop configuration files for network devices and IT computers, if possible, including OT computers
 - develop operating specification, deal with problems firstly according to them.

- **Backup + Contingency plan**
 - Cold standby or hot standby for key equipment, regularly backup for IT computers.
 - Contingency plan for each ship, different symptoms, such as software failure, hardware failure, and virus infection, are given respectively disposal plans
 - Basic strategy is to control the situation, try to restore itself, switch to emergency mode, and then request shore-based support, step by step
Proposal 8: Awareness Promotion

- **Training and Drill**
 - Regular cyber security knowledge training
 - Operation skills training (by supplier)
 - Regular cyber security emergency drill, shipboard only, shipboard + shore-based joint drill

- **Awareness promotion materials**
 - Security Manual
 - Poster (near terminals)
 - Publicity cartoon/animation/movie/film
 - Screen saver
 - …
Our Plan & Goal

Set up a cybersecurity lab, to carry out systematic research.

- Develop guidelines about cyber security, such as resilience management
 - Network architecture, redundancy and segmentation
 - Risk assessment model, classification of asset, threat, and vulnerability
 - Minimum requirements and measures of protection, detection, response and recovery

- Provide technological consulting services
 - Management: Construction consultation of cybersecurity management system
 - Technology: Harden solution of cybersecurity network architecture, port protection, remote access, etc.
 - Personnel: Awareness promotion by training or other materials, to train the qualified front-line manager, administrator and operator

Help shipping companies improve ship safety management system
To meet the requirements of IMO/OCIMF/RightShip and others
Create value for clients and society
This is the consistent goal of CCS.
Thank you for listening!

Welcome to contact us

Tel: (8610) 58112288
E-mail: ig@ccs.org.cn

Tel: (8627)85423516
E-mail: zbchen@ccs.org.cn