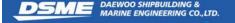
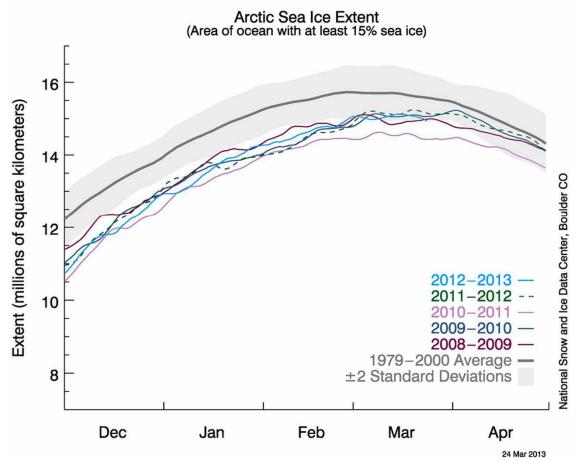
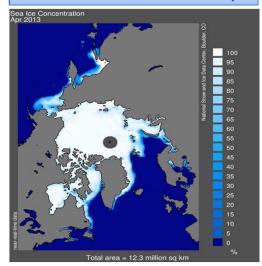

Contents

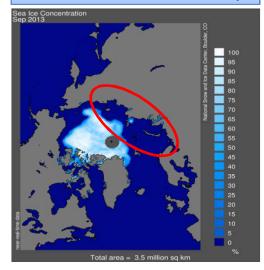

- Northern Sea Route(NSR) and Arctic Resources
- YAMAL LNG Project & Arctic LNG Carrier
- Ice Trial



Northern Sea Route(NSR) and Arctic Resources



Ice Extent in Recent 5 years

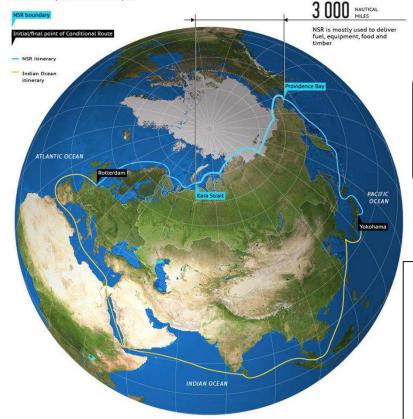


Source: National Snow and Ice Data Center

Max. ICE concentration around Apr.

Min. ICE concentration around Sep.

Northern Sea Route(NSR)


- NSR is running through Kara, Laptev, East Siberian and Chukchi seas.
- Arctic environment is changed due to an effect of Greenhouse gas
 - Arctic ocean to be open to regular maritime traffic
- Increasing shipping demand for Northern Sea Route (NSR)
- Increasing resource development in Arctic area(Oil & GAS)

Advantages of using NSR

The NSR is the main shipping route in the Arctic that skirts Russia's northern coast and links European and Far Eastern ports

NSR is attractive to shipping companies
 Cut fuel consumption & CO2 emission

Main advantages

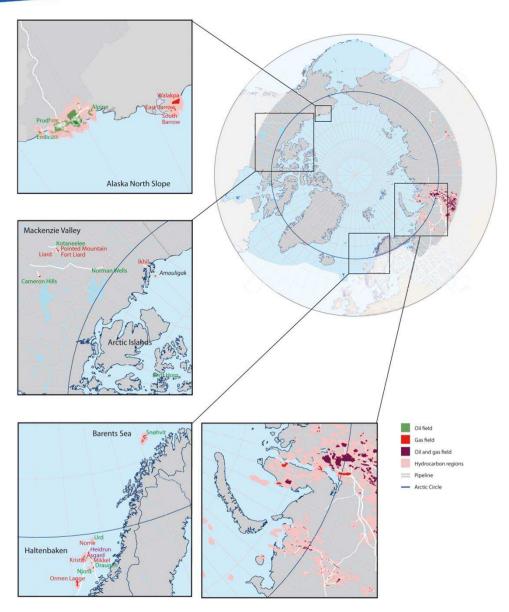
1 Reduced freight costs due to shorter distance and travel time:

DISTANCE (NAUTICAL MILES) / TIME (DAYS)

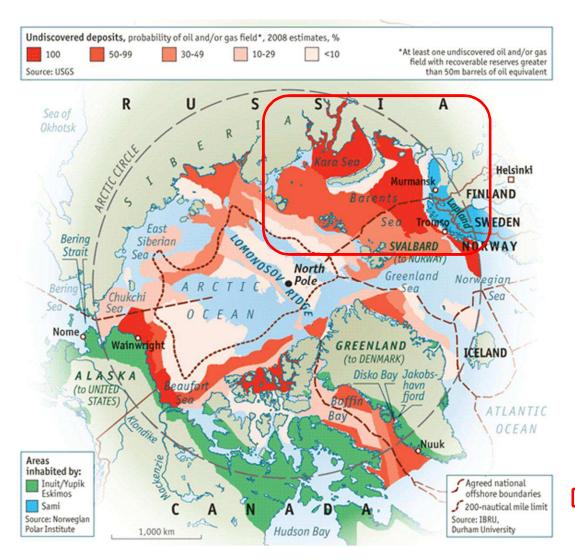
7 300/20 11 200/33

2 Lack of sea piracy threat

Main disadvantages


- 1 Icebreaker guidance required
- 2 Crews have to be trained for operations in the Arctic
- 3 Short navigation period: 2-4 months per year

Arctic Resources


- Approx. 61 large oil and natural gas fields are located in the Arctic Circle in Russia, Alaska, Canada's Northwest Territories, and Norway
- **43** of the 61 large Arctic fields are **located in Russia**
- 35 of these large Russian fields
 (33 natural gas and 2 oil) are located in the West Siberian
 Basin

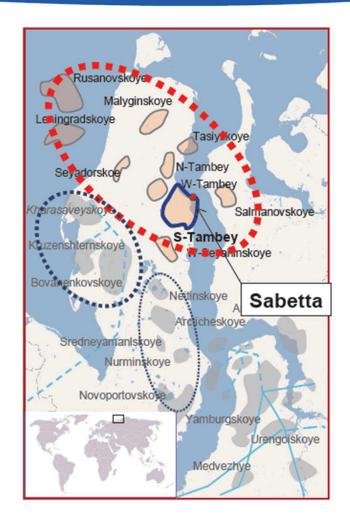
Arctic Resources - Potential

Arctic Mean Estimated Undiscovered Technically Recoverable, Conventional Oil and Natural Gas Resources By Arctic Province, Panked by Total Oil Equivalent Resources

By Arctic Province				
USGS Petroleum Province Name	Crude Oil (billion barrels)	Natural Gas (trillion cubic feet)	Natural Gas Liquids 1/ (billion	Total Resources, Oil
			barrels)	Equivalent 2/ (billion barrels)
West Siberian Basin	3.66	651.50	20.33	132.57
Arctic Alaska	29.96	221.40	5.90	72.77
East Barents Basin	7.41	317.56	1.42	61.76
East Greenland Rift Basins	8.90	86.18	8.12	31.39
Yenisey-Khatanga Basin	5.58	99.96	2.68	24.92
Amerasia Basin	9.72	56.89	0.54	19.75
West Greenland-East Canada	7.27	51.82	1.15	17.06
Laptev Sea Shelf	3.12	32.56	0.87	9.41
Norwegian Margin	1.44	32.28	0.50	7.32
Barents Platform	2.06	26.22	0.28	6.70
Eurasia Basin	1.34	19.48	0.52	5.11
North Kara Basins and Platforms	1.81	14.97	0.39	4.69
Timan-Pechora Basin	1.67	9.06	0.20	3.38
North Greenland Sheared Margin	1.35	10.21	0.27	3.32
Lomonosov-Makarov	1.11	7.16	0.19	2.49
Sverdrup Basin	0.85	8.60	0.19	2.48
Lena-Anabar Basin	1.91	2.11	0.06	2.32
North Chukchi-Wrangel Foreland Basin	0.09	6.07	0.11	1.20
Vilkitskii Basin	0.10	5.74	0.10	1.16
Northwest Laptev Sea Shelf	0.17	4.49	0.12	1.04
Lena-Vilyui Basin	0.38	1.34	0.04	0.64
Zyryanka Basin	0.05	1.51	0.04	0.34
East Siberian Sea Basin	0.02	0.62	0.01	0.13
Hope Basin	0.002	0.65	0.01	0.12
Northwest Canadian Interior Basins	0.02	0.31	0.02	0.09
Total	89.98	1,668.66	44.06	412.16

Gas North of the Arctic Circle," USGS Fact Sheet 2008-3049 Washington, DC (2008), Table 1, page 4. Note: The column totals do not equal the sum of the rows due to rounding. USGS website URL is: http://pubs.usgs.gov/fs/2008/3049/. The relative location of these provinces is identified in Appendix B. 1/ Natural gas liquids are composed of ethane, propane, and butane.

2/ The USGS uses a natural gas to oil conversion factor in which 6 thousand cubic feet of natural gas equals 1 barrel of crude oil.



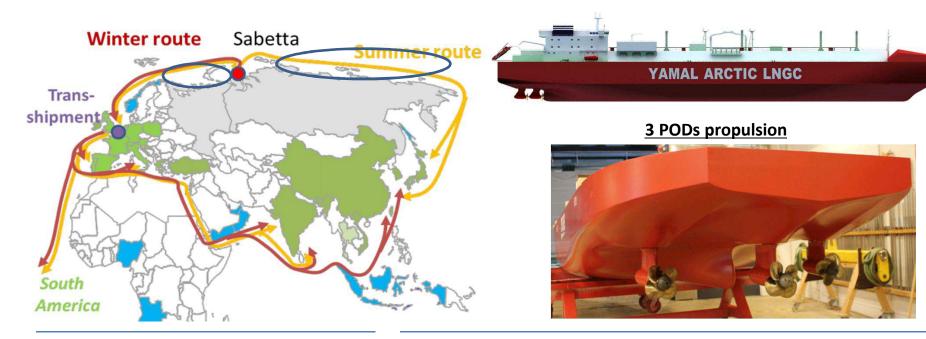
YAMAL LNG Project & Arctic LNG Carrier

YAMAL LNG Project

Gas reserves of the Yamal Peninsula

• 1.3 TCM Yamal South-Tembey Field Resources Base

- 16 mtpa, LNG Production
- 1 mtpa, Condensate Production
- Drilling of more than **200** wells
- Construction of 3 LNG trains
- With 15 Icebreakers (LNG Carrier)



Design basis for Yamal Arctic LNG

Principal Particula	ars
----------------------------	-----

Length O.A	299.0 m
Length B.P	283.1 m
Breadth, mld	50.0 m
Depth, mld	26.5 m
Designed draft	11.76 m
Cargo capacity	172,600 cbm

Design concept

Ice strengthening	Ice class Arc7
Service area	Sabetta ↔ Murmansk ↔ Europe/India Sabetta ↔ NSR ↔ Korea/Japan
Independent navigat	ion
Northarn saa rauta a	Auring cummor/outumn

Northern sea route during summer/autumn

All year round navigation in the Kara sea

Design basis for Yamal Arctic LNG

Ice class (Arc7)

- Summer / Autumn season : independent navigation
- Winter / Spring season: icebreaker escorted navigation may be required

Ship category	Permitted type and	thickness of ice
	Winter/spring navigation	Summer/autumn navigation
Arc4	Thin first-year	Medium first-year up to 0,9 m
Arc5	Medium first-year up to 0,8 m thick	Medium first-year
Arc6	Medium first-year	Thick first-year up to 1,5 m
Arc7	Thick first-year up to 1,8 m	Second-year
Arc8	Multi-year up to 3,4 m	Multi-year
Arc9	Multi-year	Multi-year
Note. The classification of ice adopt Ice type Multi-year Second-year Thick first-year Medium first-year Thin first-year	ed according to the "Sea Ice Nomenclature" of the W Ice thickness > 3,0 m > 2,0 m > 1,2 m 0,7 — 1,2 m < 0,7 m	orld Meteorological Organization (WM

Overview

Ice Performance

Double Acting System (DAS) Hull form development

- Bow/Stern Ice Shape
- Hull Form Optimization
- Ice Hull Interaction

Arctic LNGC
Key Design
Characteristics

Winterization

Heating & Thermal Insulation
Semi-enclosed Mooring Spaces
Anti-icing provisions
Totally enclosed Bridge
ER Cooling Water System

Strength & Safety

Fwd. & Aft. Ice Belt LNG CCS in Ice condition Hull Load Monitoring ER Double Hull

POD Propulsion

POD Hull Design POD Electric Solutions

Ice Performance

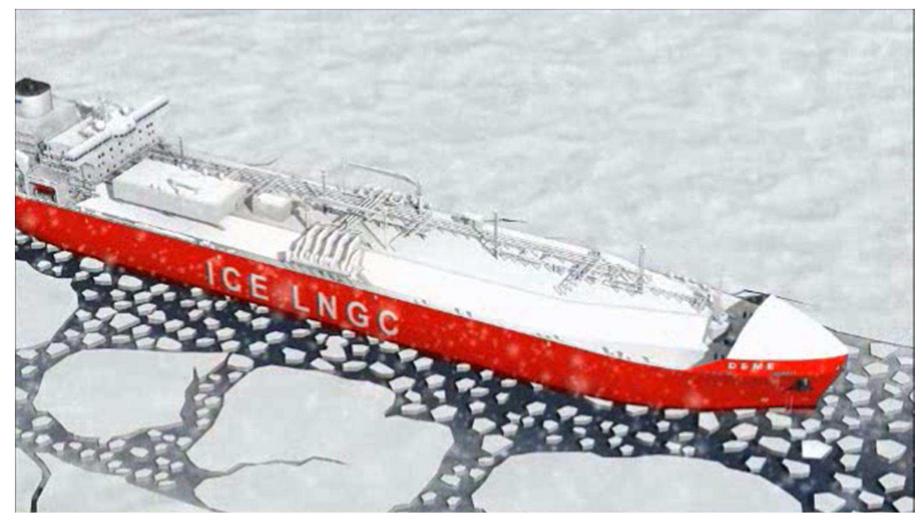
Extensive hull form development for Double Acting System(DAS) throughout various hull form alternatives

Double Acting System (DAS)

Open water & ice performance

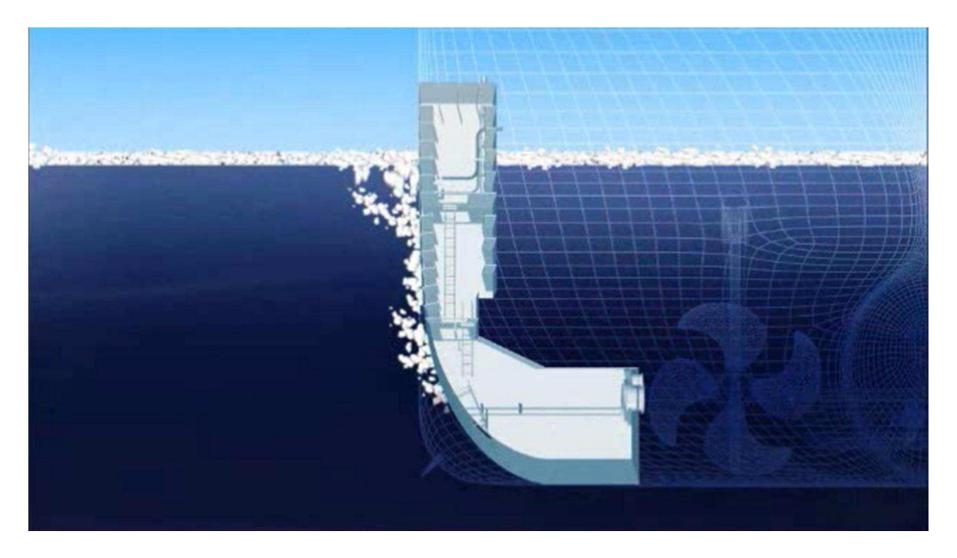
Ice Performance

Extensive researches and model tests



Ice Performance

Winterization



Winterization

Winterization

POD Propulsion World's first/largest 15MW class Arc7 POD system

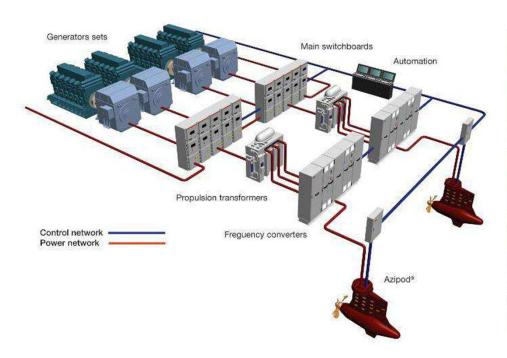
Propulsion motor

Propulsion frequency converter

Propulsion transformer

High voltage(6.6kV) main SWBD

Main generator(6.6kV)

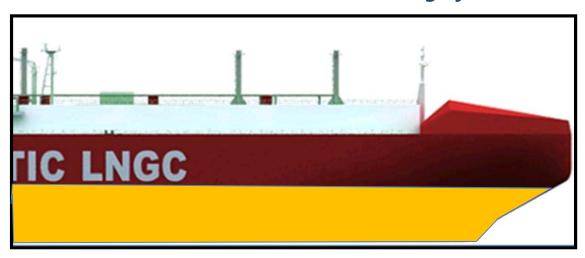

: 15,000 kW x 3 sets

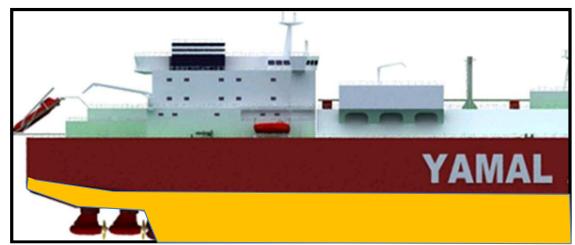
: Three(3) sets, one(1) for each propulsion motor

: Six(6) sets, two(2) for each propulsion motor

: 2sets

: 11,250 kW x 4set + 8,450 kW x 2 sets


World's first/largest 15MW class Arc7 POD system

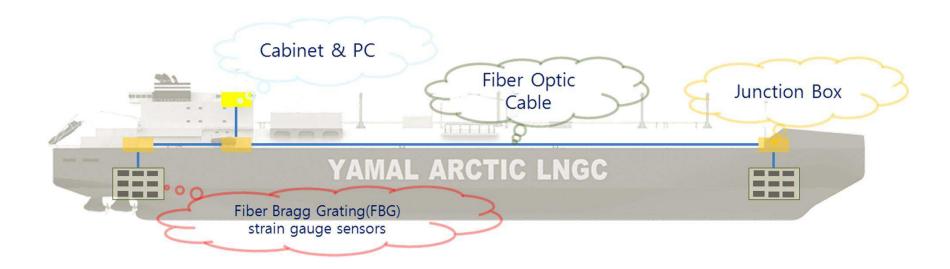


Strength & Safety

Forward Region

- Ice region based on RS requirement
- In consideration of DAS(Double Acting System)

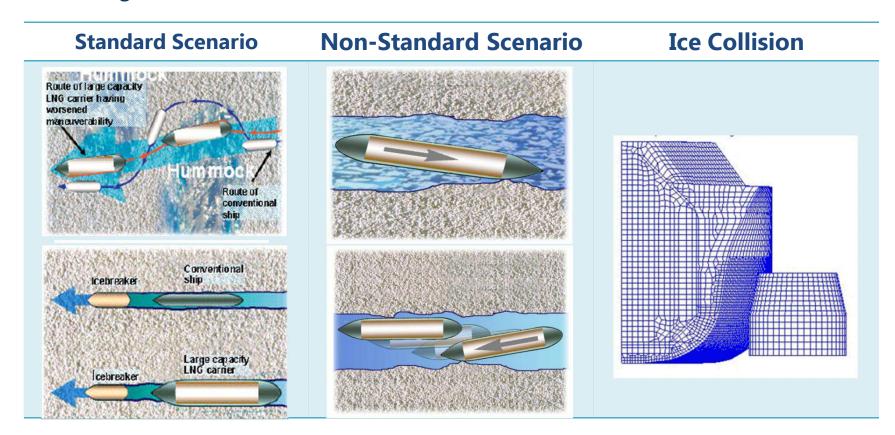
After Region



Strength & Safety

Real time Hull Stress/Load monitoring by Ice breaking

- . Real time monitoring and log data.
- . Hull stress monitoring system + Ice load Monitoring
- . Sensor installation at Fwd, Amid, Aft
- . Fiber Optic sensor which are against Arctic Temperature
- . Monitoring of Navigation data(speed etc) and POD propulsion data(power etc)

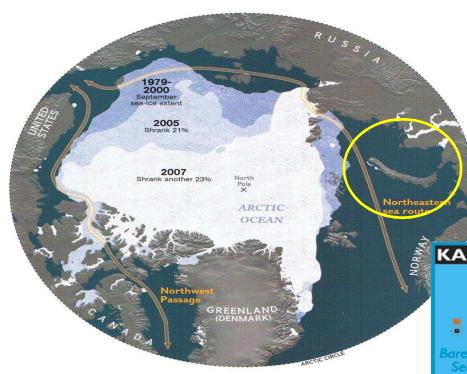

Strength & Safety

LNG Cargo Containment System

Ice collision safety analysis for CCS in multiple scenarios

- FEA calculations with ice channel sides
- FEA calculations for shoulder loading in maneuvering in ice
- Iceberg collision

CCS flexibility in Ice/Arctic operation NO96



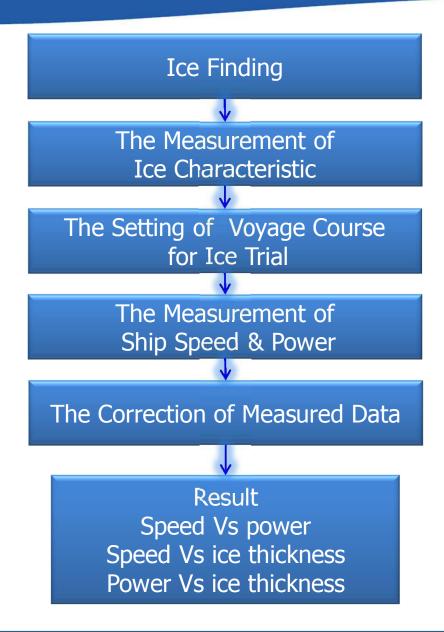
YAMAL ARC7 LNGC ICE TRIAL

The Arctic Area for Ice Trial

- Ice Trials were carried out
- 1. 2017. 02.18~03.08 (CHRISTOPHE DE MARGERIE)
- 2. 2018. 02.24~03.11 (VLADIMIR RUSANOV)

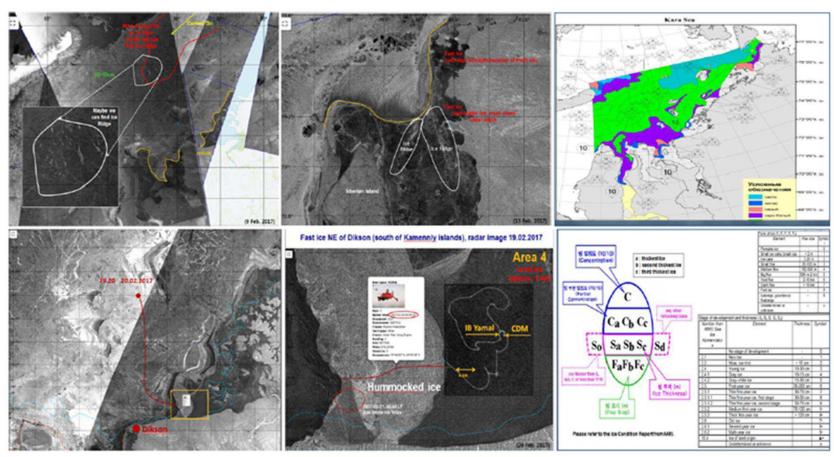
The purpose of Ice Trial

Verification ship's performance on ice field


Major demonstration items

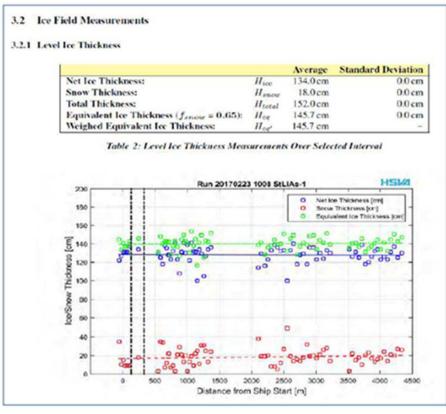
- Speed performance (astern/ahead)
- Turning ability
- Vibration & Noise Measurement
- Function test of various equipment in Low Temperature

Flowchart of Ice Performance Trial



Ice Finding

Find proper ice station to carry out Ice Trial


- SATELLITE IMAGE, ICE CHART
- INFORMATION FROM ICE BREAKER (ICE OBSERVER)

Ice Measurement (by AARI)

Measurement of ice properties

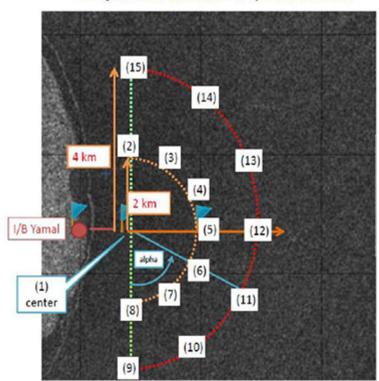
- ICE & SNOW THICKNESS MEASUREMENT, FLEXURAL STRENGTH
- ICE PROPERTY MEASUREMENT (ICE TEMP., DENSITY, SALINITY)

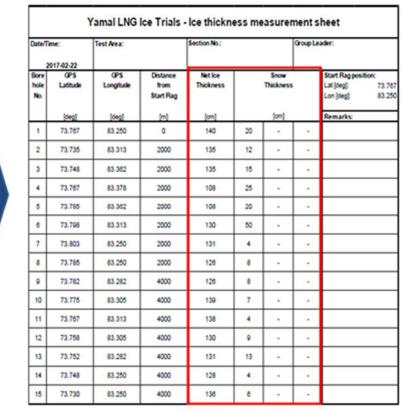
Date/Ti	me: 017-02-22	Test Area:		Section No.:			Group L	eader:	
hole No.	GP5 Latitude	CPS Longitude	Distance from Start Mag	Net ice Thickness		Snow Thicknes	•	Start Flag poet Lat (deg): Lon (deg):	73,767 83,250
	(deg)	(deg)	(m)	(om)		(om)		Remarks:	
1	73.767	83.250	0	140	20				
2	73.735	83.313	2000	135	12		-		
3	73.748	83.362	2000	135	15				

	Y	amal LNG lo	e Trials - I	Flexural Str	ength meas	urement sheet	
Date/Ti	me:	Test Area:		Section No.:		Group Leader:	
	017-02-22						
Bore hole No.	CPS Latitude	CPS Longitude	from Start Rag	Rexural Strength	Method (profile = 1) (3-point = 2) (cantilever = 3)	Start flag position: Lat [deg]: Lon [deg]:	73.7667 83.2500
\Box	[deg]	[deg]	[m]	[893]	H	Distribution * Remar	ksc
1	73.7667	83.2500	0	794	2	9 samples at 3	3 layers
17	73.7667	83.2500	0	780	1	Core No 2	201

Air Temp. [*0	C]:	-20	Snow Temp. [*C]:			Water Temp. [*C]:		
Total Ice Tick	kness (cm):	140	Snow Thick	ness (cm):	2	Salinity of Wat	er (%):	
Inp	ut Data				Input Da	nta		
Tem	perature			S	alinity and I	Density		
	T[*C]		Zo [cm]	Salinity [%]	Weight [g]	Length [cm]	Diameter [cm]	
Z _r [cm]								
Z _t [cm]	-18.0		10	4	1323	9.3	14.2	

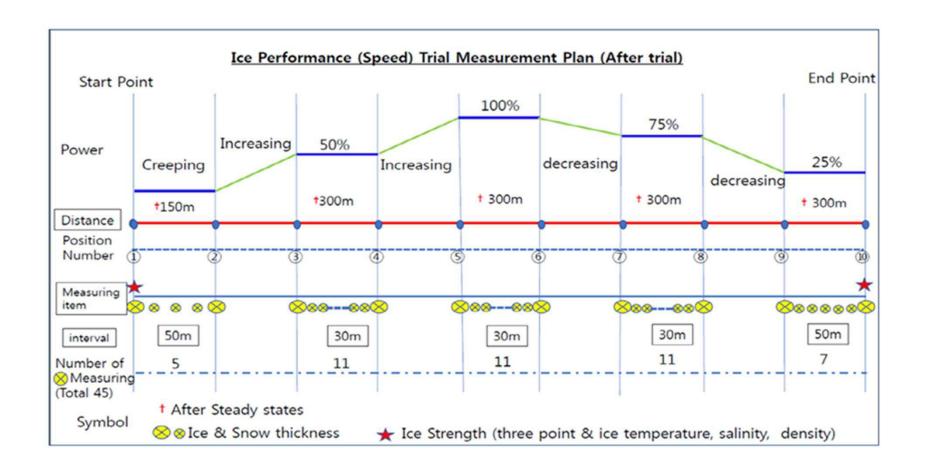
Ice Measurement (by AARI)



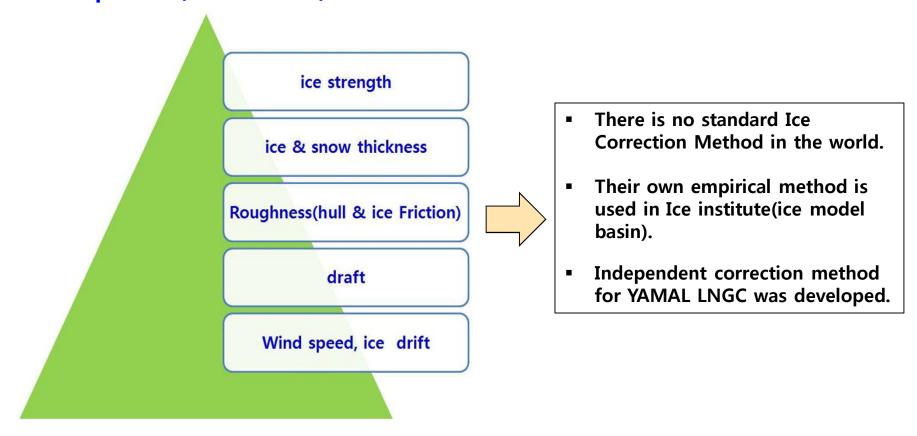


The Setting of Voyage Course for Ice Trial

- Judgment of Ice Thickness & Environmental condition
- Setting of Voyage Course
- ICE & SNOW THICKNESS, ICE DRIFT
- WATER DEPTH, WIND SPEED/DIRECTION


Arrangement of Measurements for possible test tracks

The Measurement of Ship Speed & Power

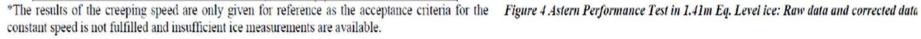


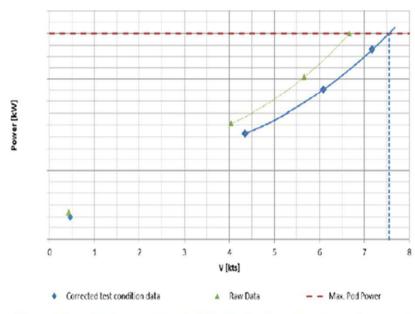
Ice Performance Test

The Correction of Measured Data

 Correct measured data & environmental condition to Requested(Contractual) condition.

- The activities other than ice correction method such as managing and reporting were cooperated with HSVA.


Result (Speed-Power-Ice Thickness)


Table 2 Astern Performance raw data

Average raw o	lata with	out any co	rrection		
Test Run	H_ice [cm]	H_snow [cm]	SIG_F [kPa]	V_sog [kts]	P_tot [kW]
Run 20170223_1008_StLiAs-1*	134.0	18.0	636		
Run 20170223_1008_StLiAs-2	128.0	18.5	636		
Run 20170223_1008_StLiAs-4	128.7	19.5	636		
Run 20170223_1008_StLiAs-3	129.4	18.6	636		

Table 3 Astern Performance corrected data

Results of Test Runs				Average H_eq' adjustme	
Test Run	P_corr [kW]	V_ice [kts]	H_eq' [cm]	P_corr_av [kW]	
Run 20170223_1008_StLiAs-1*			145.7		
Run 20170223_1008_StLiAs-2			140.7	1	
Run 20170223_1008_StLiAs-4			141.6	i	
Run 20170223_1008_StLiAs-3			141.8		
Average weighted equivalent ice	thicknes	s [cm]:	141.3		

Completion..!! World First ARC7 LNG CARRIER ICE TRIAL

