Development & application for the sea trial analysis program (i-STAP) based on IMO guidelines under discussi

Tae-il Lee(Hyundai Heavy Industries) Myung Soo Shin(KRISO) Beom Jin Park(KRISO)

November 27, 2014

CONTENTS

1/20

HYUNDAI HEAVY INDUSTRIES CO., LTD.

1. Background

- EEDI is most important issue for protection environments in international society.
- Validation of speed performance becomes important.
- Ship owner's mistrust for speed trial results.
- Clear and fair method for speed trial analysis is required.
- IMO ordered harmonization between ISO and ITTC.
- Revised ISO 15106 is in voting.
- Ship yards have to prepare for these trends.

Added Resistance Factors in Sea

 In real sea, a ship meets with various environmental conditions during speed trials(EEDI) and services(EEOI).

2. ISO Standards for Speed Trial(2014)

Correction Factor	ISO (2002)	ISO (2014)
Analysis Method	Taniguchi-Tamura	Direct Power
Wave	0	0
Wind	0	0
Steering	0	Х
Drifting	0	Х
Water Temperature	0	0
Water Depth	0	0
Tidal Current	0	0
Displacement	0	0

- ISO (2014) method is in voting until next month.
- Steering and drifting corrections are excluded.
- Many of correction method and procedure are changed for each factor.

4/20

3. Development of i-STAP

- i-STAP(ISO Speed Trial Analysis Program) in developing
- Until confirmation of revised ISO 15016
- Sponsored by KOSHIPA
- Programed by KRISO (Korea Research Institute of Ship & Ocean Engineering)
- Based on ISO 15016(2014) in voting until Dec. 2014
- Korean ship yards joined

4. Introduction of i-STAP

Overview

- Fully support speed trial analysis as defined in ongoing amendments to ISO15016
 - Wind resistance with 3 options for wind resistance coefficients
 - 4 options of wave resistance
 - Water temperature and density correction
 - 2 options for current correction
 - 2 options for speed power correction
 - Shallow water correction
 - Displacement correction
 - Load conversion
- Ease of input using GUI with error checking and guidance
- Provide detailed calculation results for experts
- Output chart, summary report (pdf) and detail report (excel)
- Compatible with any PC running windows XP or later

Graphic User Interface

Main Manu

Data Input

- Input data is categorized into 8 logical groups.
 - Project
 - Wind resistance
 - Wave resistance
 - Temperature correction
 - Speed and power estimation
 - Displacement correction
 - Load conversion
 - Measured data at each trial run

Calculation

- Log window
 - Shows progress
 - Error message

Output

- 3 kinds of outputs
 - Graphic output
 - PDF output for report
 - Excel file of detailed output

Graphic output

- Load conversion results

Graphic output

- Current correction result

Graphic output

- Speed power curve

HYUNDAI HEAVY INDUSTRIES CO., LTD.

PDF output for report

		Tits program is developed by KRISO Copyright(3) 2013-2014, KRISO & KOSHIPA, All					
Project Name	SampleData	Reference Time	2012-07-16				
No. of Double Run	4	No. of Engine Setting	4				
Wind Coe	ficients	Wind Tunnel Test Results					
Wave Res	istance	Theoretical with Formulae Trial: 19.3 °C (Standard: 15 °C)					
Water Temp.	Correction						
Shallow Water	Correction	No Correction					
DPM		DPM for Power Evaluation					
UFI	a						

Target Power (Kw)

16,500.00

16,000.00

From 100,000 ton to 101,990 ton

Vref (Knot)

14.05368

13.61233

Sea Trial Data

Displacement Correction

Load Condition

EEDILoad

DesignLoad

Selling	Kane	Time	٧O	PsiD	VWR	PSI WR	Temp.	PBM	ж	HIVE	DIM	TWI	H83	80	T81
0	50%.Up		1134	٥	12.40	16.39	162	10,929	6 89	15	0	60	0	0	
0	50%0cwn	0236	12.97	130	3.55	-30.00	142	11,009	59.4	15	0	60	0	0	
1	70%Up	05:40	13.92	0	13.63	14.82	142	15,513	66.0	15		60	0	0	
1	70%0 own	0724	13.09	190	3.96	-79.15	142	15,425	66.3	15	0	60	0	0	
Z	29%.Up	09:40	14.71	٥	1+177	14.40	142	18,790	70.3	15		60	0	0	
Z	29%0 own	1151	15.36	130	396	-62.29	162	18,777	70.6	15		60	0	D	
3	100%.Up	1359	14.46	٥	13.96	1+53	162	21,918	739	15		60	0	0	
3	100%0 own	16:0+	15.77	130	+.D6	-96	14.2	ZZ // +	74.4	15		60	0	0	

Sea Trial Performance (with displacement correction)

Name	RAA (674)	RANU (KN)	ras (KN)	∆R (KN, Temp)	∆V (Kiot, Siallow)	P1 (Trial)	Power (displ. Corr.)	RPM	Vs (faiog
50% Up	68.65	28.39	-0.17	76.68	0.00	9,923.10	10,054.31	58.90	12.18
SD% Down	-18.42	31.10	-0.22	12.47	0.00	10,597.41	10,737.54	59. 4 0	12.45
70% Up	54.55	32.67	-0.25	36.99	0.00	14,265.98	14,454.62	66 III	13.74
70% Down	-18.68	31.31	-0.22	12.41	0.00	14,850.69	15,047,06	66.30	13.92
85%.Up	56.42	33.92	-0.27	90.07	0.00	17,342.68	17,57200	70.30	14.54
85% Down	-22.38	34.97	-0.30	12.29	0.00	18,039.48	18,328.68	70,60	14.36
100% Up	55,36	33.52	-0.27	89.11	0.00	20,237 23	20,555.49	73.90	15.45
100% Down	-22.91	35.64	-0.31	12.41	0.00	21.271.38	21,552,65	74.40	15.69

Speed corresponds to Target Power

Load Condition	Speed (Knot)	Power (kW)
EEDILoad	14.05368	16,500.00
DesignLoad	13.61233	16,000.00

_ **D** X

페이지(P) 1 🚔

STEED IN DSS beta This program is developed by KRISO and KOSHIPA Copyright(6) 2013-2014, KRISO & KOSHIPA, All rights recensed,

Data Contena for Nea (16		
Speed(Kaots)	EED ILoad	DesignLoad
10	5,969.15	6,569.53
11	7,932.17	8,620.03
12	10,286.62	11,079,39
13	13,068.05	13,984.78
14	16,312.09	17,373,37
15	20,054.29	21,282.33
16	24,330.24	25,748.83
17	29,175.52	30,810.03
18	34,625.73	36,503.10

HYUNDAI HEAVY INDUSTRIES CO., LTD.

• Excel file of detailed output

Wind resistance calculation results:											
	50%Up	50%Down	70%Up	70%Down	85%Up	85%Down	100%Up	100%Down			
VG (m/s)	5.83	6.67	7.16	6.73	7.57	7.90	7.44	8.11			
Psi0 (dea)	0.00	180.00	0.00	180.00	0.00	180.00	0.00	180.00			
VWR (m/s)	12.40	3.55	13.68	3.56	14.07	3.95	13.95	4.06			
PsiWR (deg)	16.39	-80.08	14.82	-79.15	14.40	-62.29	14.53	-59.66	\vdash		
VWT (m/s)	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00			
PsiWT (deg)	29.99	29.98	29.99	29.97	30.00	29.97	29.99	30.03	\square		
VWTref (m/s)	5.74	5.74	5.74	5.74	5.74	5.74	5.74	5.74	\square		
VWRref (m/s)	11.18	3.33	12.47	3.36	12.86	4.10	12.74	4.26	\square		
PsiWRref (deg)	14.87	-59.34	13.31	-58.47	12.89	-44.43	13.02	-42.47	\square		
RhoA (kg/m3)	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23			
RhoStd (kg/m3)	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23			
CAA(Psi)	0.85	0.50	0.84	0.51	0.83	0.80	0.83	0.84			
CAA(0)	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80			
RAA (kN)	48.46	-18.42	54.56	-18.68	56.42	-22.38	55.86	-22.91			
Water temp. and salt contents calculation	results:								_		
	50%Up	50%Down	70%Up	70%Down	85%Up	85%Down	100%Up	100%Down			
VG (knot)	11.34	12.97	13.92	13.09	14.71	15.36	14.46	15.77			
CF	1.43E-3	1.41E-3	1.40E-3	1.41E-3	1.39E-3	1.38E-3	1.39E-3	1.37E-3			
CF0	1.45E-3	1.43E-3	1.41E-3	1.42E-3	1.40E-3	1.40E-3	1.41E-3	1.39E-3			
RF (kN)	12.47	16.05	18.34	16.33	20.34	22.07	19.70	23.19			
RTO (kN)	8.73	11.42	13.15	11.63	14.69	16.02	14.19	16.88	⊢		
RAS (kN)	-0.17	-0.22	-0.25	-0.22	-0.27	-0.30	-0.27	-0.31			
Speed and power estimation results:									-		
	50%Up	50%Down	70%Up	70%Down	85%Up	85%Down	100%Up	100%Down			
Initial data:									-		
t	1900-01-00 01:11:32	1900-01-00 03:48:28	1900-01-00 06:52:19	1900-01-00 08:36:19	1900-01-00 10:51:50	1900-01-00 13:03:09	1900-01-00 15:11:04	1900-01-00 17:15:42	-		
vs (knot)	12.16	12.16	13.51	13.51	15.04	15.04	15.12	15.12	+		
PDM (KW)	10,600.83	10,707.92	15,047.27	14,962.37	18,226.35	18,213.62	21,260.82	21,411.34	┥		
Deltak (KN)	/6.68	12.47	86.99	12.41	90.07	12.29	89.11	12.41			
DPM Load variation results:	0.709	0.700	0.775	0.775	0.740	0.749	0744	0744	1		
Via	0.700	0.700	0.775	0.775	0.740	0.740	0.744	0.744	⊢		
Xip	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	┢		
Via	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	⊢		
Nm (rom)	0.0	0.0	0.0	0.0	70.20	70.60	72.00	74.40	+		
	0.000	10 507 79	1/ 267 60	1/ 251 10	17 205 20	18 086 50	20 220 74	21 281 44	+		
No (rom)	5,523.32	50.40	66.00	66.20	70.20	70.40	73.00	7/ /0	+		
Iterative current correction results:	50.90	35.40	00.00	00.50	10.50	10.00	13.90	74.40	1		
Rive' (knot)	-0.84	_0.52	0.18	0.83	0.07	-0.50	_0.00	-0.08	1		
I Sneed nower curve coefficients	-0.04	-0.32	b.10	41 928 27001	0.07	-0.50	-0.55	-0.00	-		
rispeed power curve coemercina	M	-00,120.00010	v	-1,0E0.E7001	P	5.0			1		

5. Application Results

- Purpose of application
 - Validation of accuracy for ISO 2014
 - Comparison between 2002 version and 2014 version
- Selection of container carriers
 - More than 3 double runs for all sister ships
 - Including no correction ship carried out in very calm sea to consider correct answer
 - Using the normal options in speed trial analysis

- Some results doesn't converge to correct answer.
- Two method shows similar accuracy.
- There is possibility of arguments between builder and owner.

In view point of ship builders

- Why all results are different?
- The correction method is perfect to consider all added resistance?
- The speed performance depends on environmental condition and luck?
- Is it the best to wait until to meet very calm sea conditions on the sea?
- How explain the difference of speed performances between the sister ships to owners?
- How reduce the speed loss of non-compensation?

6. Conclusions

- i STAP in developing based on ISO 15016(2014) is introduced. The program was developed user friendly using GUI.
- All reports are automatically produced when i-STAP is used.
- The revised ISO method was validated it's accuracy and compared with old ISO method. The accuracy of two methods is similar.
- But there is possibility of arguments for speed performance after sea trial between builder and owner because of inaccuracy of speed trial analysis method.
- For precise estimation of EEDI and EEOI, more improvements are necessary for correction method.

Thank you!

