

Verification of EEDI at final stage Task and future direction

The 5th Asian Shipbuilding Experts' Forum December 1st to 2nd, 2011 in Busan

Tsuyoshi Ishiguro

IHI Marine United INC.

A member of The Shipbuilder's Association of Japan (SAJ)

IHI MARINE UNITED INC.

1. Outline of EEDI Verification Procedure

2. Correction method for speed trial

3. Speed verification based on Sea Trial

4. Future Scope

IHI MARINE UNITED INC.

EEDI Verification Procedure

IHI MARINE UNITED INC.

IHI MARINE UNITED

Verification of Attained EEDI at Sea Trial

After environmental correction,

Attained EEDI shall be validated by

Dry Cargo

After environmental correction, Attained EEDI can be verified directly

Issues to be clarified

Unification of correction method for speed trial

- ISO15016 or equivalent method
- Norway proposed the revision of ISO

Speed correction from ballast to full load condition

- Dry cargo vessel
- Criteria for judgment of proper verification
 Ballast Trial result -> Full load Performance

IHI MARINE UNITED INC.

IHI MARINE UNITED

Correction method for speed trial

Basic Concept of ISO15016

IHI MARINE UNITED INC.

Correction method for speed trial

IHI MARINE UNITED

<u>ISO15016</u>

- Strip Theory Calculation(MARUO)
 +Fujii-Takahashi,Faltinsen,Kwon ••
- Model Test
- Other(Towsin-Kwon)

Wind resistance

$$R_{\mathsf{A}\mathsf{A}} = \mathbf{0}, \mathbf{5}\rho_{\mathsf{A}} \cdot C_{\mathsf{A}\mathsf{A}}(\psi_{\mathsf{W}\mathsf{R}}) \cdot A_{\mathsf{X}\mathsf{V}} \cdot V_{\mathsf{W}\mathsf{R}}^2$$

 $C_{AA}(\psi_{WR}) = C_{AA0} \times K(\psi_{WR})$

IHI MARINE UNITED INC.

MARIN STWAVE-1 & 2

Only Bow quartering

Same Formula except ····

Height of anemometer

$$V_{wind}(z_{ref}) = V_{wind}(z) \left(\frac{z_{ref}}{z}\right)^{\frac{1}{2}}$$

Correction method for speed trial

Following items to be discussed

- Calculation method for wave resistance
 - Applicability of STWAVE-1 & 2 ?
 - Limitation of wave direction ?
- Calculation of wind force
 - Validation of STA's assumption
 - -> Averaged absolute wind, Correction of anemometer height, Applicability of CFD for C_x estimation
- Basis of speed correction for STA (and others)
 - The effect of propeller load taken into account ?
- Wave observation
 - Accuracy of observed wave height
 - Other possible method in the future (Wave radar, Buoy, etc.)

Speed verification based on Sea Trial

Outcome from Workshop and JWG#3

Complete unification for correlation is quite complex

- •No unified procedure is possible in the short and long term
- •Unified procedure to which correlates the model scale with trial results will results in a wrong prediction

> Verifier need a threshold value for proper verification

Only for,

IHI MARINE UNITED

- Dry cargo vessel
- Relative correlation between full and ballast condition
 - EG, $\Delta CF(Ballast)-\Delta CF(Full)$

Threshold value for correlation factor can be established ?

Present state of the art for powering method

- 1978 ITTC performance prediction method -

Correlation is the same for all shipbuilders ?

Explore the Engineering Edge

Present state of the art for powering method

- Model Ship Correlation - Reason of complexity

IHI MARINE UNITED

Effective Power: P_E

$$P_E = \frac{1}{2} \cdot \rho \cdot S_{app} \cdot V^3 \cdot C_t$$

Hull Efficiency: η_H

$$\eta_H = \frac{1-t}{(1-w_m)\cdot ei}$$

 \Rightarrow ITTC, Empirical, Yazaki, •••

Power Correction: C_{P,C_N} $P_{DT} = C_P \cdot P_{DS}, \quad n_T = C_N \cdot n_S$

 \Rightarrow Status is un-familiar

IHI MARINE UNITED INC.

 $Ct = (1+K)C_{fs} + C_w + \Delta C_f + C_A + C_{AAS}$

⇒ Cf:ITTC1957,Schoenherr · · ·
 K:2dim or 3dim(Prohaska, Low Fn · ·)
 ΔCf: Discrete type, Integrated,ITTC,Empirical

Propeller Efficiency: η_o

 $\eta_o = \frac{J}{2\pi} \frac{K_t + \Delta K_t}{K_q + \Delta K_q} \quad \Rightarrow \Delta \text{Kt, Kq: Scale Correction} \\ \text{Apply model POT directory}$

Correlation factors : ΔC_{f} , C_{A} , ei, C_{P} , C_{N} Absolute value would be different together with the different tank test and/or trial method

Explore the Engineering Edge

∆Cf

Future Scope - ITTC's Activity -

ITTC Special Committee on 'Performance of ship in service' established by Japan & ITTC proposal (MEPC62-5-32)

Development of

IHI MARINE UNITED

- > Tank test quality
- Guideline for EEDI calculation including the threshold value of correlation
- Correction method for speed trial

Participants from ASEF

- •Tsujimoto and Takai (NMRI & SHI-ME. Japan)
- ·H.Seo (HHI, Korea)
- ·J.Wang (MARIC, China)

Explore the Engineering Edge

Conclusion

IHI MARINE UNITED

> Speed performance is moving from a commercial matter to regal requirement.

⇒Verification should be done properly without loophole although it is very complex and challenging task

- ITTC Special Committee is a powerful board to clarify the task
 - ⇒Details of powering and sea trial could not be opened in the past because of their confidentiality
 - ⇒Comparative study should be carried out jointly with shipbuilding industry
- IPR should be kept in a rigorous manner Exact practice to be established

ASEF member occupy a major part of ship building industry. Let's play a leading role to pursue the proper method of EEDI verification by our close cooperation !!

IHI MARINE UNITED INC.

Thank you for your attention !

고맙습니다

真谢谢你了

有難うございました

IHI MARINE UNITED INC.