

Samsung Heavy Industries CO.

Technical issues on EEDI Application

5th ASEF in Busan 1st Dec. 2011 K. Y. Shin Samsung Heavy Industries.

- Ice Strengthening Tanker
- Ice Breaking Tanker

Correction for Shuttle Tanker

Closing

2

What is Ice Classed Ship ?

	Conventional	Ice-strengthening	Ice-breaking
Navigation		Open Sea, Paltie, Aretie	Arctic
Hull Form			
Design Target	Open Sea Performance	Mainly Open Sea	Ice Performance
Propulsion Power	Base	High (飰)	Much High (압압)
DWT	Base	Low (卆)	Much Low (⇩⇩)

Introduced formula for Ice class correction (MEPC 62/5/4, Circ.681)

Power correction factor fj

"The power correction factor, f_j , for ice-classed ships shall be taken as the greater value of f_{j0} and $f_{j,max}$ as tabulated below, but not greater than $f_{j,max} = 1.0$.

Ship		fimin Depending on Ice Class					
Туре	Jjo	IC	IB	IA	IA Super		
Tanker	$\frac{0.516 L_{PP}}{\frac{nME}{\sum} MCR_{ME(1)}}$	0.72L _{PP} ^{0.06}	0.61L _{PP} ^{0.08}	0.50L _{PP} ^{0.10}	0.40L _{PP} ^{0.12}		
		- M	CR Len	ath -			
Drv	2.150Lpp ^{1.58}			gui			
Cargo Carrier	$\Sigma MCR_{ME(1)}$	0.89L _{PP} ^{0.02}	0.78L _{PP} ^{0.04}	0.68L _{PP} ^{0.06}	0.58L _{PP} ^{0.08}		
General Cargo Ship	$\frac{0.045L_{PP}^{2.37}}{\sum\limits_{l=1}^{ME} MCR_{ME(l)}}$	0.85L _{PP} ^{0.03}	0.70L _{PP} ^{0.06}	0.54L _{PP} ^{0.10}	0.39L _{PP} ^{0.15}		

For other ship types, $f_{\!\!j}$ shall be taken as 1.0."

Capacity correction factor fi

"The capacity correction factor, f_{i} , for ice-classed ships shall be taken as the lesser value of f_{i0} and f_{Lmax} as tabulated below, but not less than $f_{Lmin} = 1.0$.

Ship	£	finner Depending on Ice Class						
Туре	Type Jio		IB	IA	IA Super			
Tanker	$\frac{0.00115L_{PP}^{-3.36}}{Capacity}$	1.31L _{PP} ^{-0.05}	1.54L _{PP} ^{-0.07}	1.80L _{PP} ^{-0.09}	2.10L _{PP} ^{-0.11}			
Dry Cargo Carrier	0.000565L _{PP} ^{3.44} Capacity	1.31L _{PP} -0.05	1.54L _{pp} ^{-0.07}	1.80Lpp ^{-0.09}	2.10L _{PP} ^{-0.11}			
General Cargo Carrier	0.000676L _{PP} ^{3.44} Capacity	1.0	1.08	gtn ^{1.12}	1.25			
Container Ship	$\frac{0.1137 L_{PP}^{2.29}}{Capacity}$	1.0	1.25L _{PP} ^{-0.04}	1.60L _{PP} ^{-0.08}	2.10L _{PP} ^{-0.12}			
Gas Tanker	$\frac{0.1749 L_{PP}^{2.33}}{Capacity}$	1.25Lpp ^{-0.04}	1.60L _{PP} ^{-0.08}	2.10L _{PP} ^{-0.12}	1.0			

For other ship types, f_i shall be taken as 1.0."

Power correction factor fj

4

AMSUNG SAMSUNG HEAVY INDUSTRIES

Investigation for 104 ice classed tankers constructed in Korean shipyards

	Ice LBP		Power Correction (fj)				Capacity Correction (fi)		
Ice			Guideline [A] *	Required [B] **	Difference [B]-	-[A]	Guideline [C]	Required [D] **	Difference [D]-[C]
1C	21	19	0.5%	0.0%	-0.5%		0.1%	7.0%	7.0%
1C	23	34	0.1%	27.3%	27.2%		0.0%	1.3%	1.3%
1C	2	Gui	deline [A] *	Required	I [B] **		Guideline [C] *		0.4%
1C	2	Gar		Requiree			Guiu		0.9%
1C	2		8.5%	16.7	%		_	0.1%	
1C	2		0.0%	5.69	%		_	0.00/	0.7%
1B	2			5.0	~			0.0%	0.1%
1B	2		13./%	46.8	%	1	2	0.0%	
1B	2		2.6%	26.1	%				0.1%
1A	17	.7			20/		0.0%		0.8%
1A	17			0.2	%		- 0.	0.0%	
1A	17			16.5	%				0.9%
1A	17			10.70/		2	2 0.0%		
1A	2			10.7%		_	0.0%		1.6%
1A	2	6.3%		10.5	10.5% —				1.0%
1A	2.	4	13.770	-10.070	33.170	2			
1A	23	34	2.6%	26.1%	23.4%	_	0.0%	0.6%	0.6%
1A	23	39	0.0%	0.2%	0/2%		0.6%	0.4%	-0.2%
1A	23	39	13.0%	16.5%	3.4%				
1A	23	39	8.5%	10.7%	2.2%				
1A	24	12	6.3%	10.5%	4.2%				
1A	26	54	6.5%	0.0%	-6.5%		0.0%	1.5%	1.5%
1A	26	o4	6.5%	0.0%	-6.5%		0.0%	0.1%	0.1%
1A	27	/5	0.0%	0.0%	0.0%	2			x/////////////////////////////////////
1A	26	04 10	6.5%	0.0%	-6.5%	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1A	27	0	12.5%	16.4%	4.0%	- 1			
Average		5.9%	12.2%	6.2%		0.0%	1.1%	1.1%	

* Guideline: compensation according to the current guideline

** Required: MCR or DWT of ice class / MCR or DWT of non-ice tanker, based on same ship yard

Ice Strengthening

6

Power correction factor fj

- ✓ Less or zero compensations are given in many cases
- ✓ Additional correction is needed for A-max tankers, while additional consideration is not necessary for S-max tankers
- Assessment suggests additional correction of abt. 6.2% on the basis of average value

Capacity correction factor fi

- Zero compensations are given in the majority cases
- Assessment suggests additional correction of abt. 1.1% on the basis of average value

7

Remarks

- ✓ We agree in principle on the idea of correction factors for ice class vessels
- More consideration to be taken to fulfill the purpose of these formulas through further investigation on ice class vessels

Ice Breaking

What draw our attention into Ice Breaking Ship ?

- ✓ 25% of world wide undiscovered hydrocarbon reserves in Arctic region
- ✓ Arctic Oil & Gas reserves will improve global energy supply
- ✓ NSR is supposed to be attractive transportation measure

Ice Breaking Merchant Ships

Ice Breaking

Ice breaking arctic tanker

Vessel Particulars						
L x B x D	257 x 34 x 21m					
Deadweight	70,000 MT					
Speed	15.7 knots (Open water) 2.8 knots (1.6 m lce)					
Ice Class	Arc 6 (Air Temp45°C)					
Propulsion	10 MW POD x 2 sets					
Engine Power	27MW / 4sets					

SAMSUNG SAMSUNG HEAVY INDUSTRIES

Investigation for ice breaking tanker built in SHI

Category	Environment Condition	Level Ice	IACS Polar	DNV	RMRS	ABS	Fin-Swedish
	Severe	> 3.0 m	PC1~PC2*	Polar 30	Arc 9	A5	-
Ice Breaking (Arctic)		> 2.0 m	PC2~PC3	Polar 20 Polar 10	Arc 8	A4	-
		> 1.5 m	PC4	ICE-15 ICE-10	Arc 7	A4-3	-
		> 1.0 m	PC5	ICE-10	Arc 6	A2-1	-
		< 1.0 m	PC6	ICE-05	Arc 5	IAA	IAS

	Power Correction (fj)				
	Guideline (1AS) *	Required **	Difference		
Ice Breaking Tanker	Abt. 23%	Abt. 40%	Abt. 17%		

* Compensation for 1AS according to the current guideline

** Propulsion power of 70K ice-breaking Tanker / propulsion power of 70K conventional Tanker

More consideration to be taken for Ice Breaking Ship

Shuttle Tanker

What are different from the conventional tanker?

- Careful maneuvering and dynamic positioning are necessary for loading from offshore plant or FPSO
- ✓ Thrusters, CPP and high lift rudder are equipped accordingly

Significant disadvantage in the hydro dynamic aspect

The disadvantage of shuttle tanker in view of EEDI

- ✓ In point of power : abt. 9%~15% of power loss is necessary for maneuvering & DP
- ✓ In point of DWT : less than 1% of deadweight loss (negligible)

Remarks

- Shuttle tanker is treated as a conventional tanker in EEDI (using the same reference line)
- ✓ However, current guideline provides the compensation for only shuttle tankers equipping dual engine & twin propeller (i.e. fj = 0.77)
- Suitable compensation should be given for shuttle tanker for fair comparison in EEDI

Closing Remarks

Thank you !

