

Asian Shipbuilding Experts' Forum for International Maritime Technical Initiative

Current Development of Shipbuilding Technology - Japan

Dave (Hiroshi) IWAMOTO Chairman of International sub-Committee, SAJ

Contents :

- Environmentally Friendly Ship "e Future Series" (IHIMU)
- LNG-Fuelled Large Container Vessel (IHIMU)
- Concept Design of LNG Bunkering Ship (Kawasaki HI)
- Development of the Algorithm for Accuracy Evaluation System for Curved Shell Plates by Laser Scanner (Sumitomo HI-ME)
- New Generation LNG Carrier "Double Eco MAX" (Mitsui E.S.)
- World's Largest Roll-on/Roll-off ship "TONSBERG" *Ship of the Year Award 2011* (Mitsubishi HI)
- Next Generation Spherical Tank type LNG C "SAYAENDO" (Mitsubishi HI)
- 6400RT Car Carrier with Hybrid Power Supply system (Mitsubishi HI)
- Hybrid Turbocharger (Universal Shipbuilding)
- Energy Saving Device (Universal ShipbuildingI)

IHIMU Environmentally Friendly Ship eFuture Series

30% reduction of GHG is attained by integrating the technology of IHIMU

eFuture 13000C (Container Vessel)

eFuture 13000C

- Twin-skeg Hull Form
- Tip Raked Propeller and Rudder Bulb
- Front Bonnet
- Waste Heat Recovery System
- Photovoltaic Panel and Lithium Ion Batteries

Waste Heat Recovery System

Tip Raked Propeller and Rudder Bulb

eFuture 310T, eFuture56B

- Advanced Contra Rotating Propeller
- Tip Raked Propeller, Rudder Bulb and Semicircular Duct
- Waste Heat Recovery System
- Whaleback Bow
- AR Vane

LNG-Fuelled Large Container Vessel (1)

Approval in Principle

IHIMU has obtained GL AIP for LNG Fuelled 13,000 TEU eFuture Container Ship

Concept

- Service route : Far East North Europe
- Fuel : LNG for ECA abt.2,000miles, Fuel Oil for Global abt.18,000miles
- LNG tank room and compressor room are arranged to minimize container losses

Service Route

LNG Fuelled 13,000TEU Container Ship

LNG-Fuelled Large Container Vessel (2)

Main dimensions

Loa: 330.0 m, Bm: 48.2 m, Dm: 27.0 m

Minimized Container Loss

Fuel Gas Supply System

-Submerged type LNG transfer pump is provided inside of tank

- -Fuel gas supply system is arranged on the tank top
- -High / Low pressure LNG supply system can be available
- -Boil off rate can be adjustable

Concept Design of LNG Bunkering Ship (1)

Basic idea of LNG bunkering ship

Kawasaki's small scale LNG carrier

Special equipment onboard (in comparison with small scale LNG carrier)

Design issues

- 1. LNG tank
- 2. Propulsion system
- 3. LNG bunkering interface with LNG receiving ships
- 4. Special equipment onboard

Concept Design of LNG Bunkering Ship (2)

Design issues and solutions

1. LNG tank

Tank type : Type B or Type C ?

Material : Aluminum or Stainless steel or 9% nickel steel ?

Requirement : • Flexibility in partial cargo loading

- Low cost and weight, etc.
- 2. Propulsion system

Engine type : DFD mechanical or DFDE or Gas engine etc...

Requirement: • High efficiency

Redundancy, etc.

3. LNG bunkering interface with LNG receiving ships

By Loading arm or By Flexible hose ?

4. Special equipment onboard

Transferring boil-off gas to main engine(s) Bunkering LNG fuel to receiving ship

THE SHIPBUILDERS'

6th ASEF, 22 - 23 November 2012, Guangzhou China

Concept Design of LNG Bunkering Ship (3)

6,000m³ type LNG fuel bunkering ship

STEERING GEAR ROOM

L.W.L

THE SHIPBUILDERS' Association of Japan

6th ASEF, 22 - 23 November 2012, Guangzhou China

Kawasaki

DEVELOPMENT OF THE ALGORITHM FOR ACCURACY EVALUATION SYSTEM FOR CURVED SHELL PLATES BY LASER SCANNER (1)

N.Nakagaki, A.Sugawara,

Sumitomo Heavy Industries Marine & Engineering Co.,Ltd., Japan

K.Hiekata, H.Yamato,

M.Enomoto and K.Takahashi,

The University of Tokyo, Japan

- Curved shell plates are deformed plastically by application of heat, and water-cooled based on wooden bending templates.
- The accuracy of the measurement depends on experience of craftsman.

wooden bending templates

DEVELOPMENT OF THE ALGORITHM FOR ACCURACY EVALUATION SYSTEM FOR CURVED SHELL PLATES BY LASER SCANNER (2)

- The laser scanner is able to measure a multiple number of points at a time.
- It requires a little measurement cost in range of desired accuracy.

FARO	Photon 80
Туре	Phase-based
Scan rate	120,000 points/sec
Laser Class	3R
Range	0.6m-76m
Distance Error	±2mm at 25m

- Accuracy (± 2 mm @25m distance)
- able to get whole surface at one time

DEVELOPMENT OF THE ALGORITHM FOR ACCURACY EVALUATION SYSTEM FOR CURVED SHELL PLATES BY LASER SCANNER (3)

- □ Improve the accuracy evaluation system for curved shell plates using laser scanners
 - Employ new algorithm based on ICP(Iterative Closest Point) for comparison of measured data and design data
 - calculation and visualization of the error
- Verify the proposed system in practical use through experiments at a shipyard.

DEVELOPMENT OF THE ALGORITHM FOR ACCURACY EVALUATION SYSTEM FOR CURVED SHELL PLATES BY LASER SCANNER (4)

- An accuracy evaluation system for curved panel plates using design data and point cloud data was developed.
- Validity of the proposed system in practical use is demonstrated.
 - ICP algorithm is used for registration, and it made the process of calculation simple and robust.

Mitsui New Generation LNG Carrier

Double Eco MAX

Economical & Ecological LNG Carrier evolves the LNGC market !!

Technical Feature of Double Eco Max

- Excellent hull form and highly efficient propeller is applied
- Cargo Capacity -> max. 180,000 cm3 with MOSS spherical or stretched 4 tanks
- Propulsion system -> <u>MEGI</u> Slow Speed Dual Fuel Engine
 - Highly efficient engine with proven technology
- Boil off gas $\rightarrow 0.1 \%$ /day boil off
 - TiG Panel System environmental friendly material is applied.
- Boil off gas Treatment -> <u>Reliquefaction system</u>
 - 100% gas recovery even at lower main engine low load operation
 - with High Pressure Fuel Supply System to MEGI

6th ASEF, 22 - 23 November 2012, Guangzhou China

Comparison of fuel consumption between propulsion systems

Schematic Diagram of the BOG Treatment / Propulsion System

ASSOCIATION OF JAPAN

Advantage of MEGI adoption by MES

- 1. Long run records of 12K80MCGI-S(prototype of MEGI) about 20000 hours operation during 1994/2003
- 2. Technical advantage of MEGI can be highly achieved1) Lower SFOC
 - 2) Direct propeller drive
 - 3) No knocking
 - 4) No methane slip
 - 5) Identical performance of oil & gas burning
- 3. Risk analysis is on going by MES including Fuel gas supply system
- 4. Full Scale Test of MEGI at MES to be planed in March 2013 at Tamano Works
- 5. Long experience and technical service are utilized as one of top supplier of MAN DIESEL TURBO engines

The Ship of the Year Award 2011

- the world's largest roll-on/roll-off ship "TØNSBERG " -

Particulars of the ship

- Lpp x B x D x d : 250m x 32.26m x 33.22m x 11.0m
- Service Speed : abt. 20.25 kn
- Gross Tonnage : 74,622

Capable of carrying high and heavy cargoes

Construction Machinery Max. weight 70 t

MAFI trailers Max. weight 140 t

MAFI trailers used to roll non-rolling cargoes onboard. Forklift lifts cargo off MAFI.

Heavy lift trailers Max. weight 505 t

Railcars with/without boogies

Overall Layout & Special Features

Overall Layout

Jumbo Stern Ramp 505 tons of capacity 12m width

Hoistable deck by electric motor winch

Next Generation Spherical Tank type LNGC - SAYAENDO -

Particulars of Continuous Tank Cover LNGC

- Cargo Tank Capacity : abt. 155,000 m3
- Service Speed : abt.19.5 kn
- Main Engine : Reheat Steam Turbine (UST)

SAYAENDO Concept

- Nickname "SAYAENDO"
- Proven Moss spherical tank type
- Light structure weight
- Better propulsion performance
- Better maintainability

Continuous Tank Cover LNGC (Perspective Image)

Conventional Tank Cover Moss LNGC

SAYAENDO

Overall Layout & Technical Evaluations

Overall Layout

Structural Assessment

Wind Tunnel Tests

6th ASEF, 22 - 23 November 2012, Guangzhou China

6400RT Car Carrier with Hybrid Power Supply system

Hybrid Power Supply system

- 160kW Solar Generation system
- 2.2MWh(Potential Power)
 Lithium-ion Batteries
- Diesel powered generators

Vessel under way

Electricity generated by Solar Generation system \rightarrow stored in Lithium-ion Batteries

Vessel while rest in port

Electricity stored in Lithium-ion Batteries

supplied for all of vessel's power needs

ZERO EMISSION while rest in port

The *vessel was* jointly developed by MOL, MHI and Panasonic, subsidized by the Ministry of Land, Infrastructure, Transport and Tourism as a project to help reduce CO2 emissions from ocean-going vessels, and received support from Nippon Kaiji Kyokai as a cooperative development project to reduce greenhouse gases produced by ocean shipping operations.

6400RT Car Carrier with Hybrid Power Supply system

THE SHIPBUILDERS' ASSOCIATION OF JAPAN

HYBRID TURBOCHARGER – CROSS-SECTIONAL DIAGRAM

HYBRID TURBOCHARGER – SYSTEM OVERVIEW

THE SHIPBUILDERS' **ASSOCIATION OF JAPAN**

6th ASEF, 22 - 23 November 2012, Guangzhou China

Main Switchboard

Energy Saving Device

The Shipbuilders' Association of Japan

ASSOCIATION OF IAPAN

30

Bow Shape Improvement

To sharpen the bow shape in order to reduce the diffraction wave

Performance in Waves

Ax-Bow / LEADGE-Bow

Thank you very much

The Shipbuilders' Association of Japan

6th ASEF, 22 - 23 November 2012, Guangzhou China