

6th ASEF 2012

Recent Technology Trend on Green Ships

2012 11 22 Suak Ho Van, MOERI

Contents

- **1. Introduction of MOERI**
- 2. Green Growth and Greenship
- 3. IMO EEDI
- 4. Greenship: Powering performance
- 5. Greenship Project
- 6. Summary

Introduction of MOERI

Maritime and Ocean Engineering Research Institute (KRISO), Korea Institute of Ocean Science and Technology(KIOST)

MOERI Facilities

Status of evaluation tools (MOERI)

• EFD

- Extrapolation
- Geosim Test(KVLCC, KCS, KLNG)

• CFD

- Qualitative comparison
- WAVIS 2.x : Quantitative: Self-propulsion (CFD 2010)
- Seakeeping(CFD 2010), Maneuvering (SIMMAN '09)
- Local Flow
- Pitot-tube, SPIV (2010)

DSME (6th SIMF, 2012. 10)

What is Green Ship?

- Fuel Energy shall be consumed for the ship operation, and ship also inevitably emits various kinds of **Pollutants** to the environment.
- Green ship is the ship that can Reduce Fuel Energy Consumption and/or Lessen Generation of Pollutants during operation.

MARPOL 73/78

Green Ship

- The International Convention for the Prevention of Pollution From Ships, 1973 as modified by the Protocol of 1978.
 ("Marpol" is short for marine pollution and 73/78 short for the years 1973 and 1978.)
- Annex I Oil
- Annex II Noxious Liquid Substances carried in Bulk
- Annex III Harmful Substances carried in Packaged Form
- Annex IV Sewage
- Annex V Garbage
- Annex VI Air Pollution

MARPOL 73/78

Green Ship

- The International Convention for the Prevention of Pollution From Ships, 1973 as modified by the Protocol of 1978.
 ("Marpol" is short for marine pollution and 73/78 short for the years 1973 and 1978.)
- Annex I Oil
- Annex II Noxious Liquid Substances carried in Bulk
- Annex III Harmful Substances carried in Packaged Form
- Annex IV Sewage
- Annex V Garbage
- Annex VI Air Pollution

Green Growth Policy, KOREA

Green Growth in Korea

• Global Warming

- Kyoto Protocol: 2012
- Post-2012: COP-15 meeting (2009.12, Copenhagen)
- Green Growth Policy: GDP 2%

- Effort to reduce GHG from ships : IMO

- Conference of the Parties to the UN Framework Convention on Climate Change

Suak Ho Van

GHG from Ships/shipbuilding

Greenships are built by **green shipyards** and operated by **green shipping companies** in Korea

CO2 from ships (2007)

CO2 emission(Mton)	Low bound	Consensus estimate	High bound	Global CO2 emissions(%)
Total ship emission	854	1,019	1,224	3.3
International shipping	685	843	1,039	2.7

IMO MEPC, 58th session, 2009 Korea total: 610Mton, 2% (Shipbuilding about 2.0Mton) (2007)

CO2 / ton-km (gram)

Suak Ho Van

CO2 emission for ship types (2007)

2012-12-10

CO₂ Emissions from transport (2005)

Estimation up to 2050 (2nd IMO GHG Study 2009)

IMO Policy options: reduction of emissions

- **EEDI** : Energy Efficiency Design Index
- **SEEMP** : Ship Energy Efficiency Management Plan
 - EEOI : Energy Efficiency Operational Indicator

MBM

- METS : Maritime Emissions Trading Scheme
- ICF : International Compensation Fund

Reduction ratio

Ship type	Size (DWT)	Staart	1 phase	2 phase	3 phase
		2013 ~ 2014	2015~2019	2020 ~ 2024	2025 after
Bulk Carrier	>20,000 10,000 ~ 20,000				
Gas Tanker	>10,000 2,000 ~ 10,000				
Tanker	>20,000 4,000 ~ 20,000		10 0-10*	<mark>20</mark> 0-20*	<mark>30</mark> 0-30*
Containership	>15,000 10,000 ~ 15,000			0 20	
Combination Carrier	.>20,000 4,000 ~ 20,000				
Refrigerated Cargo	.>5,000 3,000 ~ 5,000			15	30
General Cargo	>15,000 3,000 ~ 15,000		0-10*	0-15*	0-30*
* Reduction ratio linearly	proportional to ship	cizo			

* Reduction ratio linearly proportional to ship size 2012-12-10

Green Shipping

Total Lifetime Shipping Cost Share (DNV)

SHIPBUILDINGTRIBUNE.COM 2012 July 23

• On July 18th 2012, Scorpio Tankers Inc took delivery of the STI Amber, the first of eight 52,000 DWT product tankers that are being built by Hyundai Mipo Dockyard of South Korea.

Scorpio Tankers Seeks Growth Through Fuel Efficient Newbuilds

 Emanuele Lauro, chief executive officer and chairman of the board, commented, "The previous few months have been very exciting for us with the deliveries of our first five newbuildings. These vessels are performing as we expected on their voyages from the Far East to the Atlantic Basin. The following table illustrates the difference in main engine fuel oil consumption, assuming similar operating conditions, between the first newbuilding, STI Amber, and that of a comparable MR product tanker that the Company recently sold, STI Coral. The table provides evidence of the material savings (worldwide marine fuel oil prices exceed \$600 per ton) and environmental benefits of our newbuildings:

Main Engine Consumption in Metric Tons of Fuel per day	STI Amber	STI Coral	Savings in Metric Tons	Variance %
13.5 Knots Ballast	18.0	25.0	7.0	28.0%
13.5 Knots Laden	20.5	29.5	9.0	30.5%

• Scorpio Tankers Inc. Announces Financial Results for the Third Quarter of 2012, Oct. 29 2012

Scorpio Tankers Seeks Growth Through Fuel Efficient Newbuilds

 Emanuele Lauro, chief executive officer and chairman of the board, commented, "The previous few months have been very exciting for us with the deliveries of our first five newbuildings. These vessels are performing as we expected on their voyages from the Far East to the Atlantic Basin. The following table illustrates the difference in main engine fuel oil consumption, assuming similar operating conditions, between the first newbuilding, STI Amber, and that of a comparable MR product tanker that the Company recently sold, STI Coral. The table provides evidence of the material savings (worldwide marine fuel oil prices exceed \$600 per ton) and environmental benefits of our newbuildings:

Main Engine Consumption (Metric Tons of Fuel/day)	STI Amber	STI Coral	Savings (MT/day)	Variance (%)
13.5knots Ballast	18.0	25.0	7.0	28.0
13.5 knots Laden	20.5	29.5	9.0	30.5

 Scorpio Tankers Inc. Announces Financial Results for the Third Quarter of 2012, Oct. 29 2012

NYK Line: Super Eco Ship 2030 Not a joke, not a toy, not only a dream!

MAERSK (6th SIMF, Oct. 2012)

"We want to be a profitable, responsible and sustainable business. It is in line with our values, and is expected by our shareholders, customers, employees and society in general."

Nils S. Andersen CEO of the A.P. Moller - Maersk Group

Hanjin Shipping (6th SIMF, Oct. 2012)

IV. Green Ship Technology

HANJIN SHIPPING Beyond the Ocean

Green Shipbuilding

DSME (6th SIMF, Oct. 2012)

Better Future with the Green Ship Technology

With Green Ship Technologies and Strategies DSME does not just fulfill all regulations and > requirements but push the boundary even further.

Challenging Goals

Continuous R&D

Back to the Basic

Samsung Heavy Industry

SHI GF (Green Future) Ship

2012-12-10

STX Europe : EOSEAS

2012-12-10

Korean Shipyards (Newsletter)

Hyundai Heavy Industry Thrust Fin, 4~6%

Samsung Heavy Industry Saver Fin, 4~6%

DSME

Pre-swirl stator, 5%

Hybrid CRP

- Hybrid contra-rotating pod propulsion
- POW, Resistance & Self-propulsion test(container ship)
 - Sasaki(2009)

Efficiency Improvements

- Inflow duct/stators
 - Scaling effect issues with low Reynolds
- Overlapping Propellers
 - Challenges traditional powering and sc
- Rudder bulbs
 - Affects ITTC wake scaling procedure

Suak Ho Van

Greenship Project

2011 Key Technology Development Program

Energy Saving Hull Form and Propulsion System for Green Ship

Five Sub-Projects

2011. 07 ~ 2016. 06 Project Manager : Suak Ho Van Research Project Consortium

Suak Ho Van

Project Summary

1. Purpose

Effort to reduce GHG for Global Warming

Develop the key Technologies to reduce CO₂ from Ships

2. Period

2011. 7. ~ 2016. 6. (5years)

3. Budget

Total : about \$70M

4. Sub-Projects

Five sub-projects

5. Consortium

2 Research Institutes, 10 Industries, 7 Universities

Sub-projects and research topics

2012-12-10

Suak Ho Van

Energy distribution Shaft 50% : Exhaust 50% (2nd IMO GHG Study 2009)

Figure A2.1 Use of propulsion energy on board a small cargo ship, head sea, Beaufort 6

Pre-swirl Stator

Trim Variation Test

- +1~-1m in full scale
- 3~5%, <0.5knots

Micro Bubble Injection

Preliminary results

U=3.5m/s

Upstream Sensor

Other Efforts

- Hull form/propeller optimization
- Pod: vertical/longitudinal angle
- Polymer/micro bubble injection
- Air-cavity drag reduction
- LNG Pump + vortex generator

.

Economy for Energy Saving

• Engine – RPM – Speed : Fuel saving \rightarrow CO2

Ship	VLCC	Container
DFC (ton)	100	300
Fuel cost/year	\$18M	\$54M
1% saving	\$180,000	\$540,000

* Bunker C : \$600/ton, operation 300days/year

* Thrust Fin, Saver Fin, Pre-swirl Stator (3~5%)

Improvement Measures

Energy Efficiency Improvement	Energy Saving/ GHG Reduction	Cost
Slow Steaming	•	•
Optimum Trim	Ο	•
Weather Route	Δ	-
Energy Saving Devices	Ο	-
Propeller & Rudder	Ο	-
Hull Surface Treatment	Ο	-
Alternative Fuel	Δ	-
Main Engine Derating	Δ	-
WHRS(Waste Heat Recovery System)	igodot	—
LNG Conversion	O	

\odot > \bigcirc > \bigcirc > \bigcirc > \bigcirc

Summary

KMI (Korea Maritime Institute)

- Four players
- Shipper, Shipping, Shipbuilding, Financial

Green Ship Technology

Green Ship Technology

30%

Thank you! 謝謝

