

Technology and Business Innovator

NOx Reduction Technologies for 2-stroke Diesel Engines to Meet IMO Tier III

6th Asian Shipbuilding Expert's Forum, Guangzhou, November 22, 2012

Takahiro Fujibayashi Hitachi Zosen Corporation, Japan

- 1. Regulation IMO NOx Tier III
- 2. Exhaust gas recirculation
- 3. Selective catalytic reduction
- 4. Summary

Regulation

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

NOx Reduction, Fujibayashi, ASEF, China, 22 NOV 2012

Emission Control Areas

4

• High traffic areas

• Map – ECAs fixed

Source: "Understanding exhaust gas treatment systems", LRS

• ECAs fixed (existing and coming)

ECA (Annex VI: Prevention of air pollution by ships)	In Effect From
Baltic Sea (SOx)	19 May 2006
North Sea (SOx)	22 Nov 2007
North America (SOx and NOx)	1 Aug 2012 (NOx from 2016)
United States Caribbean Sea ECA (SOx and NOx)	1 Jan 2014 (NOx from 2016)

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

NOx Reduction, Fujibayashi, ASEF, China, 22 NOV 2012

IMO NOx Regulation Tier III

5

NOx limit - MARPOL Annex VI, Reg 13

- Tier 1: Low NOx atomizer, injection retard,,,
- Tier 2: Miller cycle,,,
- Tier 3: ??? (Existing engine technology not enough)

Techniques to reduce NOx

6

• Candidates, for example:

Source: 'Global: Understanding MARPOL Annex VI – the international requirements for the control of NOx and SOx emissions from ships operating globally and in Emission Control Areas' by IMO at SAE 2012, Emission Control from Large Ships

• EGR and SCR seem able to meet Tier 3

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

Consider other requirements

• Besides NOx, consider also...

EGR

Exhaust Gas Recirculation

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

NOx Reduction, Fujibayashi, ASEF, China, 22 NOV 2012

What is EGR?

9

- Recirculating a part of exh. gas as scav. air
 - More CO2 higher specific heat capacity
 - Less O2 slower combustion
 - Lower combustion temperature less NOx
- A method related with combustion process

EGR system layout

EGR system layout – EGR not in use

EGR system layout – EGR in use

EGR system layout

13

EGR system layout with auxiliary systems

14

 \checkmark

Integrated EGR - MDT

	NO _x (g/kWh)	dSFOC (g/kWh)	CO (g/kWh)	Pmax (bara)	EGR rate (%)
No EGR	17.8	0	0.65	152	0
Max. EGR	2.3	+4.9	4.17	151	39
EGR ref.	3.7	+3.0	2.57	151	36
Incr. Pcomp/	4.0	+2.5	2.18	156	36
Pscav Incr. Phyd	4.2	±2.8	1.82	151	27
	4.2	+2.0	1.05	131	57
Incr. Pscav	3.6	+1.9	2.12	156	37
Incr. Tscav	3.9	+3.6	2.82	156	34
Tier III setup	3.4	+0.6	1.34	157	41

17

What does it cost:

SFOC penalty:

Additionally aux. power: NaOH consumption: 0.5 – 1.0 % (1 - 4 g/kWh for S80ME-C-EGR2) with fuel-saving measures 1.0 – 1.5 % of M/E power 5 l/MWh in case of 3%S fuel and 50% solution

SCR

Selective Catalytic Reduction

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

NOx Reduction, Fujibayashi, ASEF, China, 22 NOV 2012

What is SCR?

- A **conventional/proven** method for stationary plants
- More than 90% NOx reduction possible
- Not conventional for ships, especially for 2-strokes
- After-treatment, regardless of combustion process
 i.e. free from 'Diesel Dilemma'
- NOx --> nitrogen and water:
 - > 4NO + 4NH3 + O2 --> 4N2 + 6H2O (Major)
 - > 6NO2 + 8NH3 --> 7N2 + 12H2O (Minor)
 - NO + NO2 + 2NH3 --> 2N2 + 3H2O (Fast)
- Urea as reducing agent
 - > (NH2)2CO --> NH3 + HCNO
 - HCNO + H2O --> NH3 + CO2

 $6NO_2 + 8NH_3 = 7N_2 + 12H_2O$

Two ways for SCR

FAQ: "SCR before or after?"

e.g. Burner = 100 C x 1 kJ/kg K x 10 kg/kWh / 42700 kJ/kg = 23 g/kWh !?

SCR-engine

21

NOx Reduction, Fujibayashi, ASEF, China, 22 NOV 2012

SCR-engine – SCR not in use

• Exhaust gas flows directly to the turbine

SCR-engine – SCR in use

 Exhaust gas flows to the SCR reactor

Temperature issue for 2-stroke

24

• The current temperature requirement for continuous operation on high S fuel is **300C (lower) and 350C (sweet)**

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

NOx Reduction, Fujibayashi, ASEF, China, 22 NOV 2012

Low Load Method and valve control

25

6S46MC-C-SCR on testbed

26

Air compressor & air tanks

Urea solution tanks

Urea supply unit

Installation in engine room

- The same arrangement engine, reactor, vaporizer, duct, fixation, ...
 - Proved on the test-bed
 - Made the sea trial trouble-less

SCR on test-bed

SCR in engine room

Installation in engine room

- Enough maintenance space reserved
 - Piston overhauling
 - Reactor maintenance
- Safe SCR
 - Urea-SCR for safety
 - Fulfilling class requirements on safety

Fixation of vessels and ducts

• SCR located at high pressure side

- ➤ Gas forces e.g. Ø600 * 2.5 barG = 7.2 tf
- Thermal expansions e.g. 0.01 mm/m/K * 4 m * 400 K = 16 mm
- Compensators necessary almost free end
- Vibrations

Fixation of vessels and ducts

• Stress evaluated before installation

30

Engine performance – sea trial

 Higher cylinder outlet gas temp. at low load due to CBV

SCR performance – sea trial

32

• DeNOx control setting = 80%

- DeNOx result = 80% at every E3
- E3-cycle value = <u>3.1 g/kWh</u>

NTE

• Less than NTE at every E3 point

6

Tier III operation cost of high pressure SCR

What does it cost:

SFOC penalty:

After-burner expense: Urea consumption: Negligible (1% only at low load, Nil at other loads) without any fuel-saving measure Nil 16 I/MWh (40% solution, deNOx 14.4 --> 3.4 g/kWh)

SCR in future

35

Summary

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

NOx Reduction, Fujibayashi, ASEF, China, 22 NOV 2012

Summary

• NOx reduction

- EGR can meet Tier 3
- SCR can meet Tier 3

Cost

- CAPEX: SCR < EGR</p>
- ➢ OPEX: EGR < SCR</p>
- Total: depending on time for sailing in ECA

• Size

- EGR: EGR2 integrated on engine (except auxiliary systems)
- SCR: Compact SCR investigation ongoing

37

FAQ: "Which is available in 2016?"

Ans.: "Both are available"

New Question: "Which way to go after Tier III?"

Consider:

- More NOx reduction required in future?
- More CO2 reduction required in future?
- ➤ Gas?
- Who consumes HFO?
- Which way are auxiliary engines going?

38

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

NOx Reduction, Fujibayashi, ASEF, China, 22 NOV 2012

Consumption of HFO in the world

39

mandatory since 2020

Impact of Global Sulfur Limit of 0.5% due to become mandatory since 2020

- The fleet of container ships carrying 1,100 TEU or more and bulk carriers & tankers of 10,000 DWt or larger is less than 20% of total world fleet.
- Around 80% of total HFO demand is consumed by this 20% fleet of large container ships, bulk carriers, oil tankers and chemical tankers.
- Annual consumption of HFO (heavy fuel oil) is more than 200 million tons.

Fuel surcharge will be approx. **60 billion USD** per year, if price difference between LSHFO/MGO and high sulfur HFO is assumed 300 USD/ton when global sulfur limit of 0.5% is implemented.

Source: "Residual Fuel Outlook" prepared by Purvin & Gertz Inc. for EGCSA workshop at Hamburg 8/9 September 2010

Transient response tests - sea trial FAST loading

• Conditions: Loading quickly HALF --> 90% load in 3 min

Transient response tests - sea trial FAST loading

- SCR-bypass opens
- Fast loading possible (A function prepared just for 'emergency')

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

Transient response tests - sea trial NORMAL loading

• Conditions: Loading HALF --> 90% load in 15 min

Transient response tests - sea trial NORMAL loading

- SCR-bypass kept closed
- Continuous deNOx possible

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

Transient response tests - sea trial FAST UNLOADING

• Conditions: Unloading 90% load --> HALF in a few secs

Transient response tests - sea trial FAST UNLOADING

- EGB and CBV open
- Fast unloading possible

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

Low temperature operation on HFO - testbed

-- Accumulation w/o SB

30

--- Accumulation w/o SB

30

High load operation

35

35

- High load operation

-With SB

25

-With SB

25

Copyright © 2012 Hitachi Zosen Corporation. All rights reserved.

5

15%load

5

10

15

15

Net running time h

Net running time h

•

Treac in degC

350

300

250

200

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 0.0

0

cat kPa

Ъ

0

10

NOx Reduction, Fujibayashi, ASEF, China, 22 NOV 2012

15%load

20

20

Loading and SB are effective.

