

Study on the Risk-Based Methodology for Ship Structural Design

Maritime Technology Research Team Institute of Ship & Ocean Systems Engineering KOREAN REGISTER OF SHIPPING

Choung-Ho Choung

22th November 2012

The 6th Asian Shipbuilding Experts' Forum

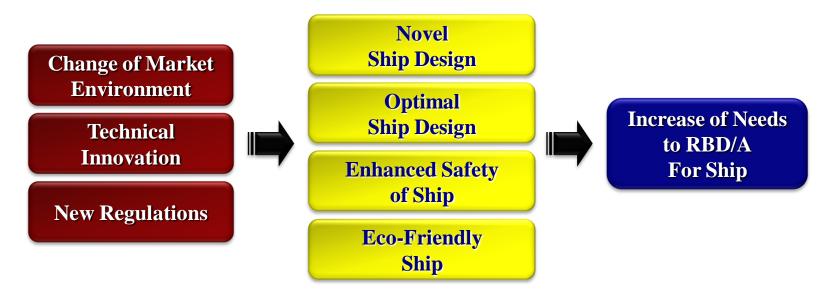
Contents

- 1. Safety Level Based Hull Scantling Assessment
- 2. Safety Level of Local Supporting Member
- 3. Case Study
- 4. Conclusion

1.

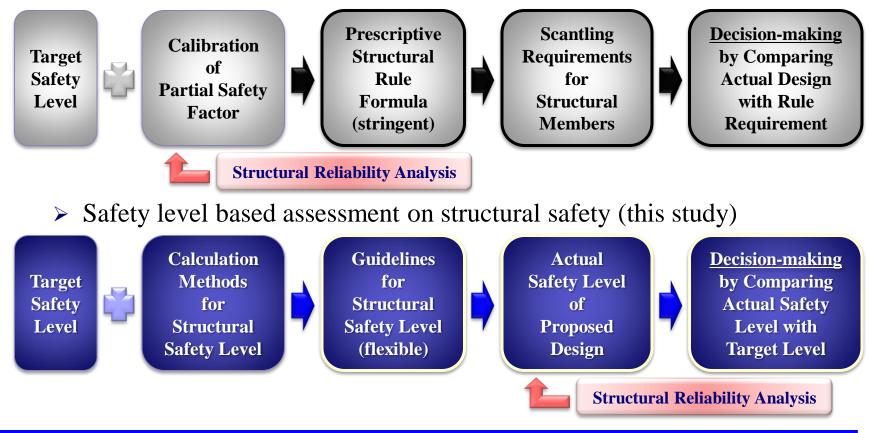
Safety Level Based

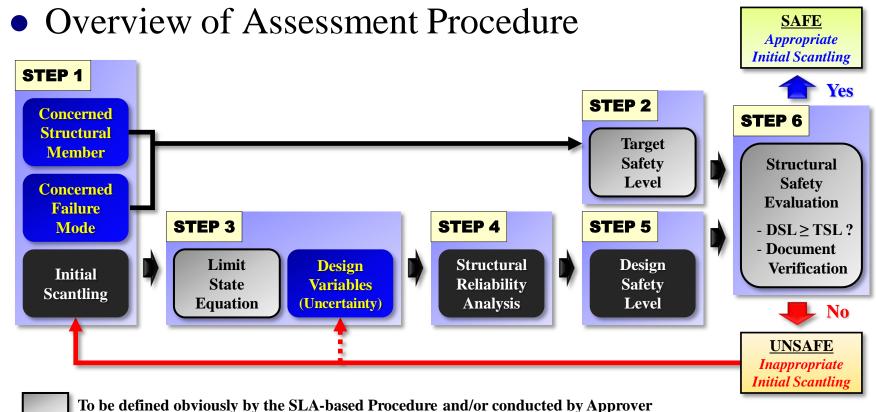
Hull Scantling Assessment


The 6th ASEF

- 2 -

• Risk-Based Design/Approval of Ship


- New design paradigm based on the risk assessment
- > This stands on probabilistic approach, not deterministic
- Safety level approach is one of the key methodology for RBD/A
- Activities to apply RBD/A into ship design/approval (e.g. IMO GBS)



• RBD/A for Ship Structure

Rule based assessment on structural safety (currently underway)

To be defined obviously by the SLA-based Procedure and/or conducted by App

To be determined and/or conducted by Ship Structure Designer

To be determined by Ship Structure Designer in accordance with the guideline in the SLA-based Procedure

• Step 1. Design Scope

- > To select initial scantling and concerned failure mode
 - Dimension, location, material, corrosion, configuration, etc.
 - Yielding, buckling, fatigue, impact, etc.

• Step 2. Target Safety Level

- Safety goal, i.e. the smallest allowable level securing safety
- Considering member type, failure mode and damage consequence

• Step 3-1. Limit State Equation

- > Design criteria: Z = R L (R & L: resistance & load factor)
- > Z = 0: boundary between safe and fail
- > Probability of failure is the likelihood that Z < 0 occurs

• Step 3-2. Design Variables

- Probabilistic modeling is necessary
- Categorization of design variables
 - Related to loads acting on hull
 - Related to materials
 - Related to uncertainties in fabrication
 - Related to uncertainties in structural modeling and mechanics

Step 4. Structural Reliability Analysis

- > There are various techniques established well at present
 - Monte-Carlo simulation, FOSM, SOSM and so forth
- ▶ From the SRA, probability of failure can be produced

• Step 5. Design Safety Level

- Quantitative safety inherent in the structural member
- The actual safety level ensured by the structural design proposed
- It could be estimated considering failure probability and operation plan

• Step 6. Structural Safety Evaluation

- First, document verification is necessary
 - All the works done by designer should be verified to be reasonable
- Second, comparing the DSL with the TSL is necessary
 - If DSL is not less than the TSL, current design is safe enough
 - Otherwise, current design is to be amended to make its structural safety level higher

2.

Safety Level of LSM

(Local Supporting Member)

The 6th ASEF

- 9 -

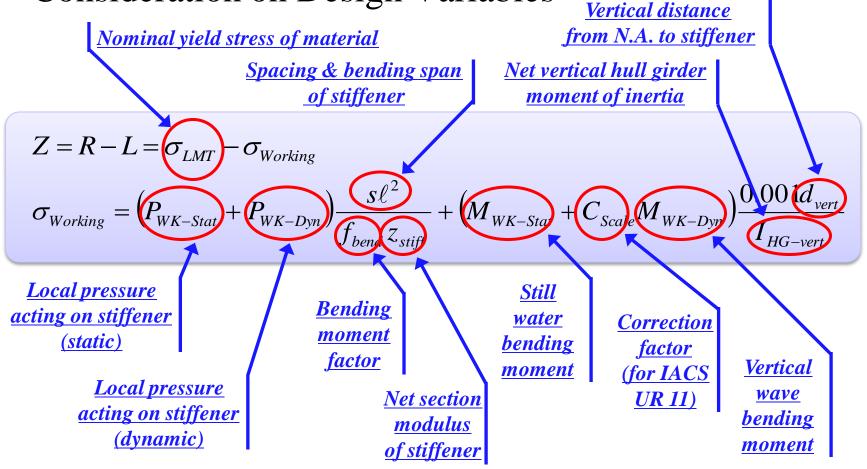
• Formulation of Limit State Equation

$$Z = R - L = \sigma_{LMT} - \sigma_{Working}$$

$$\sigma_{Working} = \left(P_{WK-Stat} + P_{WK-Dyn}\right) \frac{s\ell^2}{f_{bend} z_{stiff}} + \left(M_{WK-Stat} + C_{Scale} M_{WK-Dyn}\right) \frac{0.001d_{vert}}{I_{HG-vert}}$$

Failure mode concerned

 \checkmark Yielding failure of local stiffener, due to local bending


Load type concerned

✓ Local loads: lateral pressure from external sea and internal ballast/cargo

- ✓ Global loads: vertical wave bending moment
- Resistance factor (R) = yield stress capacity of the material used
- Load factor (L) = working stress on the stiffener considered
- Background
 - \checkmark Beam theory (both ends fixed)
 - ✓ Scantling formulas in IACS CSR for double hull oil tanker
 - \checkmark Net scantling approach

• Consideration on Design Variables

• Calculation of Design Safety Level

- Direct Load Analysis
 - is considered as more reasonable than simplified formulas that are based on plenty of assumption and idealization
 - is essential to probabilistic modeling of dynamic loads
- Probability of failure can be produced by using
 - SRA (Structural Reliability Analysis), established well at present
- Design safety level
 - For estimating DSL, HPP (Homogeneous Poisson Process) was used
 - to model occurrences of a specific event within a given time period
 - Assumptions
 - ✓ Ship experiences a wave repeatedly & independently during its lifetime
 - ✓ Event: occurrence of structural failure while ship goes through a wave
 - ✓ DSL equivalent to no occurrence of the event throughout ship's lifetime

• Calculation of Design Safety Level

To calculate Failure Probability (P f)

, when the vessel experiences a wave having a specific direction (heading angle) in a given loading condition.

To combine the Probabilities calculated

, in case one wave approaches the vessel , considering all the possible loading conditions and wave directions.

To estimate Design Safety Level , that means the probability of no structural failure occurrence throughout the vessel's lifetime.

$$P_{f-LC, angle} = \int_{Z<0} Z(LC, angle)$$

$$P_{f-LC} = \sum_{angle} r_{angle} P_{f-LC, angle}$$

$$P_{f-one \ wave} = \sum_{LC} r_{LC} P_{f-LC}$$

$$P_{Safe-Design} = P(n=0,T) = e^{-P_{f-one \ wave} T}$$

LC – a given loading condition angle – a given wave direction (heading angle) r_{angle} – ratio of each wave direction to 360^O r_{LC} – ratio of each loading condition to lifetime T – vessel's lifetime (design life)

n - number of occurrence of specific failure event

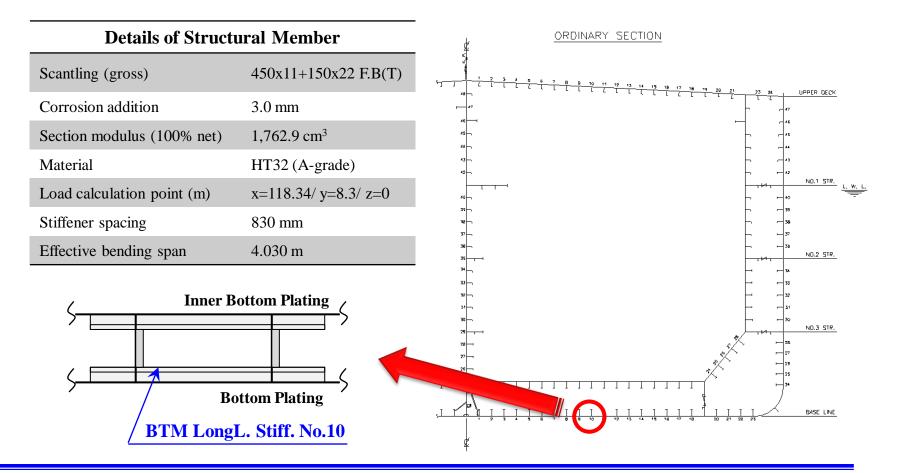
Homogeneous Poisson Process

 $P(n,T) = \frac{(\lambda T)^n}{n!} e^{-\lambda T} \text{ for } n = 0, 1, 2, \dots$

3.

Case Study

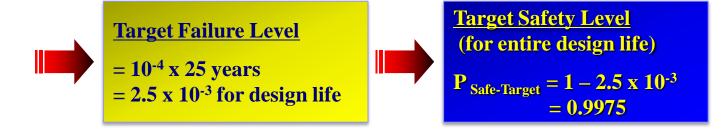
The 6th ASEF



• Step 1. Design Scope (1/3)

- Subject vessel
 - Type : Double hull oil tanker (AFRAMAX class)
 - Dead weight : 105,000 Ton
 - Principle dimension : 234m (LBP) x 42m (B) x 21.2m (D)
 - Draught : 15m
 - Applied rule : IACS CSR-Oil Tanker, RCN No.1
 - Delivery : September 2008
- Structural member concerned
 - A bottom longitudinal stiffener located at midship
 - A kind of LSM (local supporting member)
- Failure mode concerned
 - Yield strength resisting local bending due to both lateral pressure and vertical wave bending moment

• Step 1. Design Scope (2/3)


• Step 1. Design Scope (3/3)

Design Conditions Assumed				
Nominal design life	• 25 years			
External environment	Operating in North Atlantic wave environment for its entire lifeEffects of wind, current, ice, low temperature ignored			
Internal environment	• Identical to those defined in IACS CSR-Oil Tanker			
Loading condition	 Operating for 85% of the design life (non-operating for 15% of the design life) Full loading condition for 45% of the design life Normal ballast condition for 40% of the design life 			
Wave spectrum	• 2-parameter Pierson-Moskowitz spectrum			

Step 2. Target Safety Level For example, MSC 79/6/15 was considered

	l failure probabilities and corresponding reliability indices Failure consequences				
Failure development	Not serious	Serious	Very serious		
Ductile failure with reserve strength capacity	$P_f = 10^{-3}, \beta = 3.09$	$P_f = 10^{-4}, \beta = 3.71$	$P_f = 10^{-5}, \beta = 4.26$		
Ductile failure with no reserve capacity	$P_f = 10^{-4}, \beta = 3.71$	$P_f = 10^{-5}, \beta = 4.26$	$P_f = 10^{-6}, \beta = 4.75$		
Brittle behavior in terms of fracture of instability	$P_f = 10^{-5}, \beta = 4.26$	$P_f = 10^{-6}, \beta = 4.75$	$P_f = 10^{-7}, \beta = 5.20$		
$\beta = -\Phi^{-1}(P_f)$, where Φ is the standard normal distribution					

• Step 3-1. Limit State Equation

- Structural member
 - Longitudinal ordinary stiffener
- Failure mode
 - Yield failure of local stiffener, due to local bending
- > Loads
 - Local load lateral pressure
 - Global load vertical wave bending moment

$$Z = R - L = \sigma_{LMT} - \sigma_{Working}$$

$$\sigma_{Working} = \left(P_{WK-Stat} + P_{WK-Dyn}\right) \frac{s\ell^2}{f_{bend} z_{stiff}} + \left(M_{WK-Stat} + C_{Scale}M_{WK-Dyn}\right) \frac{0.001d_{vert}}{I_{HG-vert}}$$

• Step 3-2. Design Variables (1/3)

Stochastic modeling of the design variables

Design Variables	Unit	Distribution Type	Distribution Parameters Reference	
$\sigma_{{\scriptscriptstyle LMT}}$	N/mm ²	Lognormal	Mean=348/ CoV=0.06	MSC 81/INF.6
P _{WK-Stat}	kN/m ²	Constant	150.829 for full loading 69.884 for normal ballast	IACS CSR-Oil Tanker
P _{WK-Dyn}	kN/m ²	Weibull	Refer to the next slide	DLA (Direct Load Analysis)
M _{WK-Stat}	kN-m	Normal	Mean=1,950,228/ CoV=0.2857	MSC 81/INF.6 (70% of permissible moment considered for the example)
M _{WK-Dyn}	kN-m	Weibull	Refer to the next slide	DLA (Direct Load Analysis)
s, l	mm, n	Normal	Mean=830, 4.03/ CoV=0.04	SSS-93
f _{bend}	-	Constant	12 for both ends fixed	IACS CSR-Oil Tanker
Z _{stiff}	cm ³	Normal	Mean=1762.9/ CoV=0.04	SSS-93
C _{Scale}	-	Constant	Refer to the next slide	DLA & IACS UR S11
d vert	m	Normal	Mean=8.845/ CoV=0.04	SSS-93
I _{HG-vert}	m^4	Normal	Mean=354.492/ CoV=0.04	SSS-93

• Step 3-2. Design Variables (2/3)

Stochastic modeling of dynamic lateral pressure

Weibull Distribution	Heading	Full Loadin	g Condition	Normal Ballast Condition		
• Lower bound = 0	Angle (degree)	Shape Parameter	Scale Parameter	Shape Parameter	Scale Parameter	
 h: shape parameter q: scale parameter 	0	1.03737	1.68135	1.04434	1.73038	
$P_{WK - Dyn} = F(x) = 1 - e^{-\left(\frac{x}{q}\right)^{h}}$ $[kN/m^{2}]$	30	1.03464	1.98516	1.04854	1.70500	
$P_{WK - Dyn} = F(x) = 1 - e^{(q)}$	60	1.03056	2.38922	1.05558	1.59753	
$[kN/m^2]$	90	1.02734	2.70590	1.05422	1.47172	
1500 180 ⁰ 2100	120	1.02567	2.48912	1.05489	1.49974	
150° 180° 210°	150	1.02644	1.88106	1.05284	1.63043	
120° 2 2 240° 90° 270°	180	1.04162	1.43410	1.05308	1.67741	
	210	1.02964	2.77332	1.05512	2.52563	
	240	1.02707	3.67518	1.05519	2.85417	
60° ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	270	1.02720	4.26562	1.05403	3.16280	
60° 5 2 300°	300	1.03519	3.63436	1.05661	2.69334	
30 ⁰ 00 330 ⁰	330	1.03740	2.72686	1.05540	2.33878	

It is assumed the occurrence probability of each heading angle is 0.0833 (=1/12).

• Step 3-2. Design Variables (3/3)

Stochastic modeling of vertical wave bending moment

Weibull Distribution	Heading	Full Loading Condition			Normal Ballast Condition		
• Lower bound = 0	Angle (degree)	Shape Para.	Scale Para.	C _{Scale}	Shape Para.	Scale Para.	C _{Scale}
 h: shape parameter q: scale parameter 	0	1.02534	270034	0.826	1.03677	229781	1.000
$M_{WK - Dyn} = F(x) = 1 - e^{-\left(\frac{x}{q}\right)^{h}}$ [kN-m]	30	1.03145	254465	0.891	1.04077	212142	1.000
$M_{WK - Dyn} = F(x) = 1 - e^{(q)}$	60	1.05452	231936	1.000	1.05602	173345	1.000
[kN-m]	90	1.05484	203519	1.000	1.05810	153381	1.000
1500 180 ⁰ 2100	120	1.04259	223626	1.000	1.05848	195326	1.000
	150	1.02804	265590	0.846	1.05055	239661	0.993
120° 2 3 3 240°	180	1.02294	282137	0.785	1.04797	256419	0.923
90° 270° 270° 60° 300°	210	1.03145	254465	0.891	1.04077	212142	1.000
	240	1.05452	231936	1.000	1.05602	173345	1.000
	270	1.05484	203519	1.000	1.05810	153381	1.000
	300	1.04259	223626	1.000	1.05848	195326	1.000
300 00 3300	330	1.02804	265590	0.846	1.05055	239661	0.993

It is assumed the occurrence probability of each heading angle is 0.0833 (=1/12).

• Step 4. Structural Reliability Analysis

By MC simulation & AFOSM (Advanced First Order Second Moment)

Heeding Angle	Probability of Failure			
Heading Angle (degree)	Full Loading P _{f-full, angle}	Normal Ballast P _{f-ballast, angle}		
0	8.79 x 10 ⁻¹²	2.82 x 10 ⁻¹⁶		
30	9.26 x 10 ⁻¹²	2.85 x 10 ⁻¹⁷		
60	6.25 x 10 ⁻¹²	6.04 x 10 ⁻²⁰		
90	1.22 x 10 ⁻¹²	2.93 x 10 ⁻²¹		
120	5.65 x 10 ⁻¹²	9.58 x 10 ⁻¹⁹		
150	9.07 x 10 ⁻¹²	2.46 x 10 ⁻¹⁶		
180	8.42 x 10 ⁻¹²	2.59 x 10 ⁻¹⁶		
210	1.03 x 10 ⁻¹¹	3.15 x 10 ⁻¹⁷		
240	7.69 x 10 ⁻¹²	7.56 x 10 ⁻²⁰		
270	1.77 x 10 ⁻¹²	4.26 x 10 ⁻²¹		
300	6.79 x 10 ⁻¹²	1.14 x 10 ⁻¹⁸		
330	1.01 x 10 ⁻¹¹	2.66 x 10 ⁻¹⁶		

$$P_{f-ballast} = \sum_{angle} r_{angle} P_{f-ballast, angle}$$

$$P_{f-full} = \sum_{angle} r_{angle} P_{f-full, angle}$$
• r angle
• r angle
: it is assumed to be 0.083 (equally).

$$P_{f-one wave} = r_{full} P_{f-full} + r_{ballast} P_{f-ballast}$$
• r full = 0.45 (ratio of full loading cond.)
• r ballast = 0.40 (ratio of normal ballast cond.)

• Step 5. Design Safety Level

- Design safety level (P Safe-Design) was estimated
 - on the basis of HPP (Homogeneous Poisson Process)

$$P(n)_{T=total number of waves} = \frac{(\lambda T)^n}{n!} e^{-\lambda T} \text{ for } n = 0, 1, 2, \dots$$

• It means, within the time interval (T), a specific event having the intensity of λ could occur n-times independently with the probability of P(n).

$$P_{Safe-Design} = P(0)_{T=10^8} = \frac{(P_{f-one \ wave} 10^8)^0}{0!} e^{-P_{f-one \ wave} 10^8} = e^{-P_{f-one \ wave} 10^8}$$

- Structural failure when the vessel experiences one wave is defined as the event
- T is defined as 10^8 , based on the assumption that one wave approaches the vessel every 10 seconds
- P Safe-Design means the probability of no event occurrence throughout the design life of 25 years
 - \rightarrow n = 0 & λ = P _{f-one wave}

• Therefore,

$$P_{Safe-Design} = P(0)_{T=10^8} = e^{-(3.199 \times 10^{-12}) \times 10^8} = 0.9997$$

• Step 6. Structural Safety Evaluation

Current design of the stiffener is safe enough both

- From a viewpoint of "safety level approach"
 - Calculated DSL is larger than the TSL defined
 - \checkmark P _{Safe-Design} = 0.9997 > P _{Safe-Target} = 0.9975
- From a viewpoint of "deterministic approach"
 - ✓ Actual S.M. is larger than the required S.M. by IACS CSR

 \checkmark S.M _{net-Actual} = 1762.9 cm³ > S.M _{net-Req} = 1317.98 cm³

Further examination on design modification

		Actual	Design	Assessment based on		
Case	Dimension	net S.M. (cm ³)	safety level	Deterministic approach (IACS CSR)	Safety level approach	
Original	450x11 + 150x22 F.B(T) HT32	1762.9	0.9997	SAFE	SAFE	
Revision 1	450x11 + 150x20 F.B(T) HT32	1675.5	0.9990	SAFE	SAFE	
Revision 2	450x11 + 150x18 F.B(T) HT32	1507.8	0.9877	SAFE	FAIL	

Conclusion

The 6th ASEF

4. Conclusion

• In this study,

- Necessity of Risk-based design/approval for ship was mentioned
- Safety level based procedure for scantling assessment was proposed
- Regarding yield strength of LSM (e.g. longitudinal stiffener),
 - limit state equation was formulated
 - stochastic modeling of dynamic loads by using DLA was attempted
 - design safety level calculation based on failure probability was invented
- And, calculation of one example case was carried out

• As a result,

- It has been found that specific safety level of a given structural design could be quantified in consideration of;
 - ship's operating scheme (i.e. time dependent safety level) as well as
 - deviation, that is potential while constructing, from the intended design

4. Conclusion

• Consideration on Applicability

- > Target safety levels for ship structural members are to be established,
 - on the basis of agreement among various maritime stakeholders
- Regarding design variables, the followings are needed;
 - Loads more active utilization of direct load analysis
 - Material statistical analysis of measured data on material properties
 - Fabrication investigation on the quality control capacity of ship-yards
 - Modeling theoretical research on related mechanics
- Calculation tools should be provided to users;
 - S/W for DLA several S/Ws were developed well and are being used
 - S/W for Statistical analysis of DLA results further development necessary
 - S/W for SRA several S/Ws were developed well and are being used
 - S/W for GUI possible to use the scantling S/W with slight modification

THANK YOU FOR YOUR ATTENTION!