

大连船舶重工集团有限公司

YARD EXPERIENCE OF COPING WITH IMO BWM CONVENTION 2004

船厂应对压载水公约的经验介绍

CONTENT

- Update of the Ballast Water Treatment Legislation— IMO CONVENTION 压载水法规的新发展—IMO公约
- BW Treatment System performance standards 压载水处理系统的性能标准
- Type Approved BW Treatment Systems 已得到型式认可的处理系统
- BW Treatment Processes 压载水处理的流程
- Consideration of BW Treatment Systems 压载水处理系统的考量
- Yard Experience of Coping with IMO BWM Convention 船厂对于压载水管理公约的应对经验
- Case Study for VLCC 针对VLCC的研究

Update of the Ballast Water Treatment Legislation— IMO CONVENTION 压载水法规的新发展—IMO公约

Reasons for Managing Ballast Water 管理压载水的理由

- Transferring unwanted aquatic organisms via ships' ballast water is an internationally recognised problem
 通过船舶上的压载水来传播水中生物与病毒,已是国际认同的一大问题
- Seriously affecting human health, cause damage to local aquatic life and local economies

严重地影响人类建康,破坏当地水中生物,环境生态,与地区经济

 The effects costs <u>millions of dollars</u> to deal with each year 从而带来每年千万美元以上的损失

Escherichia Coli 大肠杆菌

Mitten Crab 中华绒螯蟹

Mnemiopsis Leidy 水母

Northern Pacific Starfish 北太平洋海星

Zebra Mussel 班马贻贝

Vibrio Cholerae 霍乱弧菌

Asian Kelp 亚洲海带

Update of the Ballast Water Treatment Legislation— IMO CONVENTION 压载水法规的新发展—IMO公约

Scale of Spreading Invasive Species via Ballast Water 通过压载水传播外来入侵性物种的程度

Every 9 weeks a new species is introduced somewhere in the world

每九个星期就有一个新物种传播到世界某地

Every day, 7000+ species of plants and animals are transported in ballast 每天就有超过七千种动植物被压载水运送

Every year the world's fleet moves 3 - 5 billion tonnes of ballast around the world

每年全球船队运载三十到五十亿吨压载水

Update of the Ballast Water Treatment Legislation— IMO CONVENTION 压载水法规的新发展—IMO公约

Conditions of enter into force-Require 30 States (35% world GT)

强制执行的条件-要求30个国家签署 (占世界35%总吨船舶)

Latest status, 36 States Signed up, approx. 29.07% world GT(6.93% short)

最近的特別 大OCA 日本体 Percentage of RWMC 3%)

FLAG OF REGISTRY	GT	Percentage of World Total	2004	_
Panama	256,318,669	20.46%		5
Liberia	147,511,737	11.77%	signed	
Hong Kong	97,000,545	7.74%		
Marshall Islands	93,962,035	7.50%	signed	
Singapore	74,341,089	5.93%		-5
Bahamas	61,041,531	4.87%		
Malta	55,084,001	4.40%		
China	49,059,226	3.92%		
Greece	48,523,738	3.87%		
Cyprus	24,712,733	1.97%		

Update of the Ballast Water Treatment Legislation- IMO CONVENTION 压载水法规的新发展-IMO公约

	Signatory	Sates	Total GT %		Signatory	Sates	Total GT %
1		Maldives		19	-	Antigua and Barbuda	15.36
2	3	St. Kitts & Nevis		20	•	Marshall Islands	20.99
3		Syria		21	***	R.O. Korea	22.63
4	(E)	Spain		22	^{¥¥} ○	Cook Islands	22.65
5		Nigeria		23	-	Canada	23.01
6		Tuvalu		24		Brazil	23.29
7	**	Kiribati		25		Netherlands	24.28
8	#=	Norway		26	**	Croatia	24.44
9	Ψ	Barbados		27	C*	Malaysia	25.32
10	*	Egypt	3.42	28		Iran	26.37
11		Sierra Leone		29	Ė	Mongolia	
12	T.	Kenya	3.46	30		Palau	26.44
13	8	Mexico	3.62	31	®	Montenegro	26.44
14	>=	South Africa	3.55	32	*	Lebanon	26.46
15		France		33		Trinidad & Tobago	26.46
16	*	Liberia	14.24	34		Russia Federation	
17	-	Sweden	15.79	35	3 45	Niue	27.95%
18	S (6)	Albania		36		Denmark	29.07%

USCG Final BW Management Regulations on Discharge Standards - effective from 21 June 2012

- Extension of compliance is possible, but under strict conditions: 满足时限是有机制容许推迟,但要符合严格条件:
 - o Document that compliance is not possible despite all effort made 要提交书面申请,而申请书要表明经过所有努力下仍然不可能按时满足
 - o Application must be at least 12 months before deadline 最后期限的12个月前提出申请
- USCG type-approved BWTS (as per 46 CFR 162) installed and operated
 基本要求是安装与操作 由USCG 按 46CFR162 作出型式认可的压载水处里系统
- AMS installed and used in-lieu prior to deadline is allowed for ≤5 years 最后期限前安装与使用"替代管理系统" (AMS) 是可容许的,但不能超过 5年
- AMS must have obtained USCG acceptance for use "替代管理系统" (AMS) 是需要预先得到 USCG 接受
- AMS must be operated and maintained conforming to the system specification "替代管理系统" (AMS) 需要按照系统规格来操作与维护

- Additional (operational) requirements in reducing invasive species:
 减少入侵性物种的附加要求 (操作上):
 - o Avoid discharge or uptake BW at specific areas (e.g. coral reef) 在某些地区(如珊瑚礁)避免排放或添加压载水
 - o Avoid uptake of BW in area where invasive species are abundant 避免在含有大量入侵性物种的地区添加压载水
 - o Regularly clean WBT and rinse anchor to remove sediments 定期的清洗压载舱,冲洗锚和链,除掉淤泥沉淀物
 - o Remove fouling organisms from the hull, piping, niche areas, etc. 定期除掉附在船底、管道、压载舱内,小众范围等的污损生物
 - o Maintain and implement BWMP (see next slide) 维护与应用 "压载水管理计划"
 - o Train Master, crew, etc. on use of BWTS 对船长,船员等提供压载水处理和管理方面的操作培训

 - o Recordkeeping requirements 纪录保存的要求

Update of the Ballast Water Treatment Legislation- USCG

压载水法规的新发展-美国海岸警卫队

BWMP is to include:

"压载水管理计划" 应包含:

- o Detailed safety procedures 详细安全操作程序
- o List of actions in implementing BWM practices 实践压载水管理操作的行动清单
- o Detailed fouling maintenance and sediment removal procedures (e.g. BFMP and BFRB as per MEPC.207(62)) 详细的污底维护和清除沉积物程序 (如 生物污底管理计划、纪录本)
- o USCG coordination procedures 美国海岸防卫队的协调程序
- o Identification of designated officer in charge 标注指定的主管人员
- o Reporting requirements and procedures 提供报告的要求和程序
- o With English or French or Spanish translation 如使用语文并非英、法、西语,则要翻译成这三种语言之一

- Enforcement and compliance carry out by Captain of The Port (COTP):
 由港口队长(负责人) 执行法规,促进符合法例
 - o Inspections of equipment and sampling facilities onboard 检验设备与取样设施
 - o BW and sediments sampling, checking document and records, etc. 抽取压载水与淤泥沉淀物的样品,检查文件、证书、纪录
- Sampling ports must be located:
 取样口的位置需要:
 - o As close as practicable to the BWMS prior to treatment assessing quality of BW at uptake 尽可能靠近压载水管理系统,在处理压载水前的地方 监测处理前的水质
 - As close as practicable to the BWMS overboard outlet prior to discharge assessing quality of treated BW just before discharged
 尽可能靠近压载水管理系统,在处理压载水后的地方 监测处理后排放前的水质

Sampling ports <u>proposed</u> by California State Lands Commission (CSLC):
 加利福尼亚州土地委员会 (CSCL) <u>建议</u>中的取样口的布置/安排:

- o Provide 2 sq. m. work area, 2 m. headroom, for 2 persons to take samples 提供 2 平方米工作空间, 2 米 净空高度, 能容立两人取样
- o Allow all Water Ballast Tanks at discharge line to be sampled 样品可于每个压载舱的排放管道提取

Organism Size Class	BWM 2004 Reg. D-2	USCG Final Rule 33 CFR 151.2030	California Interim Standards 2 CCR 2293
Organisms size ≥ 50 micrometers in minimum dimension	< 10 per m3	< 10 per m3	No detectable living organisms
10 ≤ Organisms size < 50 micrometers in minimum dimension	icrometers in minimum < 10 per ml		< 0.01 living organisms per ml
Organisms < 10 micrometers in minimum dimension	n/a	n/a	< 1000 bacteria/100 ml < 10,000 viruses/100 ml
Escherichia coli	< 250 cfu/100 ml	< 250 cfu/100 ml	< 126 cfu/100 ml
Intestinal enterococci	< 100 cfu/100 ml	< 100 cfu/100 ml	< 33 cfu/100 ml
Toxicogenic Vibrio cholerae (serotypes O1 & O139)	< 1 cfu/100 ml or < 1 cfu/gram of wet weight zoological samples	< 1 cfu/100 ml or < 1 cfu/gram of wet weight zoological samples	< 1 cfu/100 ml or < 1 cfu/gram of wet weight zoological samples

- Other US States have their own ballast water discharge standards, regulated via EPA's VGP program such as New York 其他美国州政府也有其压载水排放标准,与环保局EPA的VGP并存,如纽约
- All vessels operating in New York waters should comply with Condition 2 from 1 January 2012
 所有在纽约州水域的船舶需要在2012年1月1日后满足 "条件2" 的要求
 - 2. By not later than January 1, 2012, each vessel covered under the VGP that operates in New York waters, shall have a ballast water treatment system that meets the following standards, subject to the exceptions listed below.
- All new vessels constructed ≥ 1 January 2013 should comply with Condition 3 if operating in New York waters
 - 所有在纽约州水域使用的新造船舶 (在2013年1月1日后上船台) 需要满祝"条件3" 的要求
 - 3. Each vessel constructed on or after January 1, 2013 that is covered under the VGP and operates in New York waters, shall have a ballast water treatment system that meets the following standards, subject to the exceptions listed below.

- New York extended implementation dates first for Condition 2 until 1 August 2013, then for Conditions 2 and 3 until 19 December 2013
 纽约已发出通告延迟执行 第一次延迟"条件2" 到2013年8月1日,第二次延迟 "条件2" 和 "条件3" 到2013年12月19日
- USCG Standards may be more stringent, with studies to be done before 1 Jan 2016
 USCG 将来的排放标准可能更严格,在 2016 年前完成研调
- New York will push for higher USCG standards:
 纽约将会全力推动 USCG 的研调,达到以下标准:
 - o Mandatory standards of 100 times of IMO by 1 Jun 2016 在2016年6月1日后,强制性达到比IMO D-2 标准高100倍
 - o Voluntary standards of 10 times of IMO by 1 Jun 2014 在2014年6月1日后,自愿性达到比IMO D-2 标准高10倍

Organism Size Class	New York's Condition 2 in VGP Sec. 6.22	New York's Condition 3 in VGP Sec. 6.22			
Organisms size ≥ 50 micrometers in minimum dimension	< 1 per 10 m3	No detectable living organisms			
10 ≤ Organisms size < 50 micrometers in minimum dimension	< 1 per 10 ml	< 0.01 living organisms per ml			
Organisms < 10 micrometers in minimum dimension	n/a	n/a			
Escherichia coli	< 126 cfu/100 ml	< 126 cfu/100 ml			
Intestinal enterococci	< 33 cfu/100 ml	< 33 cfu/100 ml			
Toxicogenic Vibrio cholerae (serotypes O1 & O139)	< 1 cfu/100 ml or < 1 cfu/gram of wet weight zoological samples	< 1 cfu/100 ml or < 1 cfu/gram of wet weight zoological samples			
Standard for beteria	n/a	< 1,000 beteria per 100 ml			
Standard for Viruses	n/a	< 10,000 beteria per 100 ml			

美国已出台三套压载水排放标准及实施时间

- ◆ USCG标准
- ◆加州标准
- ◆纽约州标准

单边行动带来的影响:

☆使用物力方法的设备难以达到其标准;

☆使用活性物资的设备可能需要提高计量,导致毒性试验、相关 化学物资检测、生物有效性试验以及评估重新进行。

Type Approved BW Treatment Systems 已得到型式认可的处理系统

Approval Process – G8 and G9

认可程序 – G8 和 G9

^{*} Includes chemical disinfectants e.g. chlorine, ozone, etc.

[^] Includes techniques not employing chemicals, e.g. deoxygenation, ultrasound

Type Approved BW Treatment Systems 已得到型式认可的处理系统

	Name of System	Country of origin	Approval Status	Approved at	Approval date	
1	NEI's, Venturi Oxygen Stripping VOS-2500	USA	Type-approved	By Liberia thro' G8	17-Oct-07	
	PureBallast	Norway	Type-approved	By DnV for Norway (250 m3/h)	27-Jun-08	
	PureBallast 2.0 / PureBallast 2.0 Ex	Norway	Type-approved	By DnV for Norway (250 m3/h)	10-Mar-11	
3	SEDNA® 250 using active substance PERACLEAN® Ocean	Germany	Type-approved	By Germany	10-Jun-08	
4	Electro Cleen System (ECS)	Korea, R.O.	Type-approved	By Republic of Korea	31-Dec-08	
5	OceanSaver® BWMS	Norway	Type-approved	By DnV for Norway	17-Apr-09	
6	Hyde Marine's Hyde Guardian	USA	Type-approved	By LR for UK-MCA thro' G8	29-Apr-09	
7	OptiMarin Ballast System	Norway	Type-approved	By DnV for Norway thro' G8	12-Nov-09	
8	NK-O3 BlueBallast System (ex-NK BWTS)	Korea, R.O.	Type-approved	By Republic of Korea	24-Nov-09	
	PANASIA's GloEn-Patrol ™	Korea, R.O.	Type-approved	By Republic of Korea thro' G8	04-Dec-09	
	ClearBallast (Hitachi)	Japan	Type-approved	By Japan	05-Mar-10	
	JFE-BallastAce (TG Ballastcleaner & TG Environmentalguard) (1050 m3/h)	Japan	Type-approved	By Japan	26-May-10	
	JFE-BallastAce (TG Ballastcleaner & TG Environmentalguard) (17.5~4500 m3/h)	Japan	Type-approved	By Japan	25-Mar-11	
12	Resource Ballast Technologies System / Wilhelmsen-Unitor	South Africa / Norway	Type-approved	By South Africa	31-Aug-10, 19-Apr-11	
13	EcoBallast (HHI) (600, 700, 1000 m3/hr)	Korea, R. O.	Type-approved	By Republic of Korea	16-Mar-11	
	Blue Ocean Shield	China	Type-approved	By CCS for China	16-Feb-11	
15	BalClor ™ (ex-Sunrui)	China	Type-approved	By CCS for China & DNV	28-Jan-11	
16	Wuxi Brightsky's BSKY [™]	China	Type-approved	By CCS for China thro' G8	28-Mar-11	
17	RWO's CleanBallast using EctoSys™	Sweden & Germany	Type-approved	By Germany	01-Sep-10	
18	FineBallast OZ (ex-Special Pipe Hybrid BWMS)	Japan	Type-approved	By Japan	06-Jun-11	
19	Headway's OceanGuard	China	Type-approved	By DnV for Norway	07-Nov-11	
	Purimar [™] (by Samsung)	Korea, R.O.	Type-approved	By Republic of Korea	31-Oct-11	
	HHI's HiBallast (Filter Version)	Korea, R.O.	Type-approved	By Republic of Korea	11-Nov-11	
	BalPure® (Severn Trent DeNora)	Germany	Type-approved	By Germany	27-Jul-11	
	Ecochlor® BWTS	Germany	Type-approved	By Germany	Nov 2011	

Type Approved BW Treatment Systems 已得到型式认可的处理系统

Name of System	Country of origin	Approval Status	Approved at	Approval date		
24 Greenship Sedinox BWMS	Netherlands	Final	MEPC 59	01-Jul-09		
25 ARA Ballast (ex-Blue Ocean Guardian)	Korea, R.O.	Final	MEPC 61	01-Oct-10		
26 Special Pipe Hybrid BWMS (PERACLEAN®)	Japan	Final Final	Rejected by MEPC 62			
27 AquaStar™ BWMS	Korea, R.O.	Final	MEPC 63	02-Mar-12		
28 Siemens SiCURE™	Germany	Final	MEPC 63	02-Mar-12		
29 ERMA FIRST BWMS	Greece	Final	MEPC 63	02-Mar-12		
MICROFADETM Ballast Water Management System (Kuraray)	Japan	Final	MEPC 63	02-Mar-12		
31 Neo-Purimar™ (Samsung HI)	Korea, R.O.	Final	MEPC 63	02-Mar-12		
32 DESMI	Denmark	Final	To be considered at MEPC 64			
33 JFE BallastAce using NEO-CHLOR MARINE™	Japan	Final	To be considered at MEPC 64			
34 Smart Ballast (STX)	Japan	Final	To be considered at MEPC 64			
Name of System	Country of origin	Approval Status	Approved at	Approval date		
35 AquaTriComb ™	Germany	Basic	MEPC 59	01-Jul-09		
36 En-Ballast	Korea, R.O.	Basic	MEPC 60	01-Mar-10		
FineBallast MF (by Mitsui)	Japan	Basic	MEPC 61 conclude Flag to approve			
38 BlueSeas BWMS	Singapore	Basic	MEPC 62	15-Jul-11		
PERACLEAN® OCEAN (SKY-SYSTEM®) - Katayama	Japan	Basic	MEPC 62	15-Jul-11		
40 BallastMaster by GEA Westfalia	Germany	Basic	MEPC 62	15-Jul-11		
41 BlueWorld	Singapore	Basic	MEPC 62	15-Jul-11		
42 SEI-Ballast system	Japan	Basic	MEPC 63 conclude Flag to approv	е		
43 DMU ·OH Ballast Water Management System	China	Basic	MEPC 63	02-Mar-12		
H EcoGuardian™ Ballast Water Management System	Korea, R.O.	Basic	MEPC 63	02-Mar-12		
45 HS-BALLAST Ballast Water Management System	Korea, R.O.	Basic	To be considered at MEPC 64	- Warner and the second		
46 KTM-BWMS by KT Marine	Korea, R.O.	Basic	To be considered at MEPC 64			
47 HAMWORTHY AQUARIUS™-EC BWMS	Netherlands	Basic	To be considered at MEPC 64			
⁴⁸ GloEn-Saver [™] BWMS	Korea, R.O.	Basic	To be considered at MEPC 64			
Dow-Pinnade BWMS	Singapore	Basic	To be considered at MEPC 64			
OceanDoctor BWMS	China	Basic	To be considered at MEPC 64			
51 Atlas-Denmark using Anolyte	Denmark	Basic	Rejected by MEPC 60			

BW Treatment Processes 压载水处理的流程

BW Treatment Processes 压载水处理的流程

PHYSICAL SOLID-LIQUID SEPARATION

物理性固体-液体分离

PROCESS 处里方法	PROS 优点		CONS 弊端				
	Simple to install, maintain	安装、维护简便	Risk of cross contamination	交叉污染的风险			
Filtration	Environmentally friendly	环保	Consume more energy	耗能			
过滤	Modular or integral unit	独立或组装单元	Flow rate / pressure reduction	减低流速/压力			
万呢	Flexible in installation	灵活性安装	Back pressure	回压			
			Mesh replacement	网格的更换			
	Environmental friendly	环保	Risk of cross contamination	交叉污染的风险			
Hydrocyclone	No pressure drop	不会减压	Space requirement	空间的要求			
水力旋流器	Minimal maintenance	低维护要求	Dependent on particle density	取决于颗粒密度			
小刀爬机的	Better water clarity	水清澈度偏高	Only for large particles	只对大颗粒有效			
	Improve sepatration efficiency	提高分离效率	Coagulant/additives needed	混凝剂/添加物			
Coagulation	Reduce sedimentation	减低沉积物	Storage of additives	添加物的存储			
混凝			Storage of flocs	絮凝体的存储			
			Need to consider voyage duration	航程长短的考虑			

BW Treatment Processes 压载水处理的流程

DISINFECTION - CHEMICAL & PHYSICAL TREATMENT

消毒 - 化学性与物理性处里方法

PROCESS 处里方法	PROS 优点		CONS 弊端				
	Can do the job effectively	有效地工作	Less environmentally friendly	较不环保			
			Tank coatings may be affected	影响舱内涂层			
Chenical disinfection 化学性消毒			Water quality dependent (salinity)	取决于水质(咸度)			
			Temperature sensitive	容易受温度影响			
			Water pH sensitive	容易受酸碱度影响			
			Storage of extra chemicals	存储额外化学品			
			Higher safety risk (chemicals)	较高安全风险			
	Can do the job effectively	有效地工作	Water turpidity dependent	受浑浊度影响			
UV radiation	Environmentally friendly	环保	High energy consumption	高能耗			
紫外线	For water of various salinity	可用于各种咸度	Frequent maintenance needed	需要频密维护			
	For wide range of organisms	能杀多种微生物	High capital & maintenance costs	高成本(购买/维护)			
De-	Environmentally friendly	环保	Sensitive to voyage duration	敏感于航程长短			
1,000	Reduce corrosion in WBT	减低舱内腐蚀	Extra space may be needed	需要额外空间			
oxygenation 脱氧	For water of various salinity	可用于各种咸度					
加丰	Simple if IG plant available	惰气设备则简单					

SELECTION CONSIDERATIONS – Ships/Fleet 选择的考虑 – 船舶 / 船队

- Ship type / Characteristics / Trade Route 船舶 的种类 / 特性 / 航行路线
- Ballast capacity / Amount of ballast typically taken or discharged / Flow Rate 压载容量 / 压载操作量 / 压载流速
- Time ballast retained on board 压载水存放船上的时间
- Type of ballast taken clean / turbid / fresh water / salt water
 压载水的种类 干净 / 浑浊 / 淡水 / 海水
- Ballast system layout / pressure 压载系统 的布置 / 压力
- Type of ballast tank coating / ballast piping 压载舱和管道的涂层种类

- Space availability modular / package type 空间的限制 – 独立 / 组装
- Location Hazardous / Non Hazardous 安装位置 – 危险区 / 非危险区
- Power availability 电力
- Feasibility of Integration with existing systems 与现有系统集成的可行性
- Crew Competence 船员的能力
- Sampling arrangement 取样布置

SELECTION CONSIDERATIONS – Treatment System 选择的考虑 – 处理系统

● Type Approved with documents 型式认可与有关证书、文件

● Foot print and physical size 处理系统所占用空间 (平面/高度)

▶ Ballast capacity / flow rate 压载系统的容量、流量与速度

Treatment technology 处理技术

● Power Requirement 耗电量

Time for Treatment 处理所需时间

Flexibility of location of system components 系统配件安装位置的弹性

Effects of pressure drop 失压的影响

● Integration with existing systems 与现有系统一体化

SELECTION CONSIDERATIONS – Treatment System 选择的考虑 – 处理系统

● Hazardous Area Installation 安装于危险区域

Health and Safety 健康与安全的考虑

Chemical storage space 存储船上用于处理系统的化学品

Effects on tank structure/coatings
 对压载水舱涂层和结构的影响

● Additional crew workload 船员的附加工作量

Capital and Operating Cost 资本舆操作成本

System availability – delivery time / Vendor 处理系统的供应 – 准时付运

Availability of consumables, spares, support 消耗品、备件、支援的供应

Yard Experience of Coping with IMO BWM Convention 船厂对于压载水管理公约的应对经验

Four BWTS for VLCC 在VLCC上应用的2个压载水处理系统的案例

OceanSaver® BWMS
Norway

BalClorTM System

China

Notes

- Zone 1 on an open deck is only applicable when the girders are on open deck.
 When the girders are inside the cargo tank, then the open deck is zone 2 and the
 1.5m zone around zone 1 in the drawing is no longer applicable.
- The BWM room is zone 2 if the ventilation and openings are in the safe area; otherwise, it will have the same zone classification as the area it has an opening to.
- A BWM room without a cofferdam separating it from the deck of the cargo tanks is classified as being in zone 1.

OceanSaver

Voyage

Ballast tank inerting with N2 gas

Deballasting

Electrolysis unit is arranged on the side of the poop room

电解单元布置在主甲板上艉楼房间内

OceanSaver

Compressor and N2 generator in the steering gear room

OceanSaver

空压机和氮气发生器布置在舵机室内

BalClor[™] System BalClor

Manufacturer: Qingdao Sunrui Corrosion and Fouling Control Co., China

Approval Status: Final Approval for Active Substances, October 2010

Type Approval, CCS & DNV

Method: Filtration + electrolysis (sodium hypochlorite)

该系统采用原理为滤器+电解

The main components of BalClor™ BWMS

主要设备

Self-cleaning filter 自清滤器

TRO sensor 余氯传感器

Electrolyzing unit 电解单元

Neutralization unit 中和单元

BalClor

Rectifier and Controller 整流器和控制箱

Sampling unit 取样单元

BalClor

Deballasting

BalClor

Ballast system 3000m³ x 2sets

System Name 系统名称	Pressure Loss 压力损失	Power Consumption 电能消耗	Arrangement 布置情况	Remark 其他
OceanSaver 1 st generation	3. 5bar	1000 kW	Difficult 难度大	Ballast Pump all steam driven 压载泵由蒸汽驱动
BalClor	0.5bar	Max.470 kW	Easy 简单	

- ① Electrolysis unit is arranged on the side of the poop room 电解单元布置在主甲板上艉楼房间内
- ②, motor is installed in E/R through the coupling

Market Demand 市场需求

	IMO BALLAST WATER MANAGEMENT CONVENTION 2004 Implementation Schedule BWM 2004			mplementation Schedule				: BW Treatment (D-2)					JSCG Reg.						
Reg	Year of Ship Construction	Ballast Capacity (m3)	Ship Type / Approx. DWT (for reference only)	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020				
B-3, 1.2 *	< 2009	BW < 1500 or BW > 5000	Tanker / DWT < 3400 Bulker / DWT < 4200 Gen Cargo / DWT < 4100																
B-3, 1.1 *	(~ 2008)	1500 ≤ BW ≤ 5000	Tanker / 3400 < DWT < 15000 Bulker / 4200 < DWT < 14200 Gen Cargo / 4100 < DWT < 14000																
B-3, 3	≥2009 and <	BW < 5000	Tanker / DWT < 15000 Bulker / DWT < 14200 Gen Cargo / DWT < 14000		×														
B-3, 4	(2009 ~ 2011)	BW ≥ 5000	Tanker / DWT > 15000 Bulker / DWT > 14200 Gen Cargo / DWT > 14000	/															
B-3, 3 B-3, 5	≥ 2012 (2012 ~)	All	All				_												

^{*} shall comply not later than the 1st intermediate or renewal survey (whichever is earlier), after the ship delivery anniversary date in 2014/2016

Regulations are retroactively applicable 法规是有追溯性

Market Demand 市场需求

2015~2016: Appr. *6000* Vessels each year

预计每年有6000艘船舶需要安

装

In 2017: Appr. 18000 Vessels

预计有18000艘船舶需要安装

In 2019: Appr. 10000 Vessels

预计有10000艘船舶需要安装

2009~2020: Appr. *57000* Vessels in total

预计总共有57000艘船舶

需要安装

Thanks for your attention!