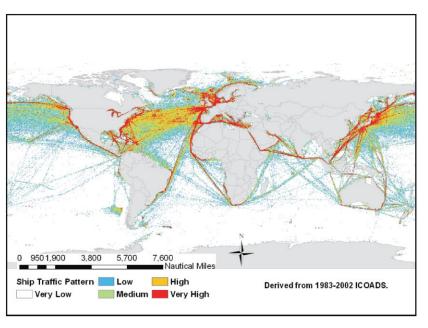
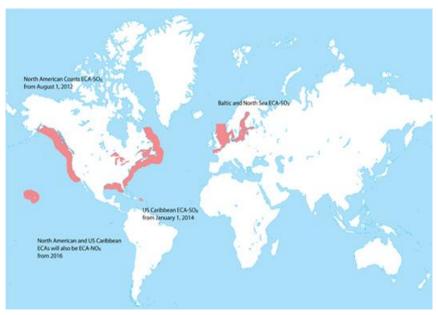


Effect of SOx and NOx Regulation Implementation, ECA's and NOx Tier III Current Developments in General


ASEF 2013, KOBE, November 6, 2013

Toru Nakao Hitachi Zosen Corporation, Japan



ECA status

High traffic areas

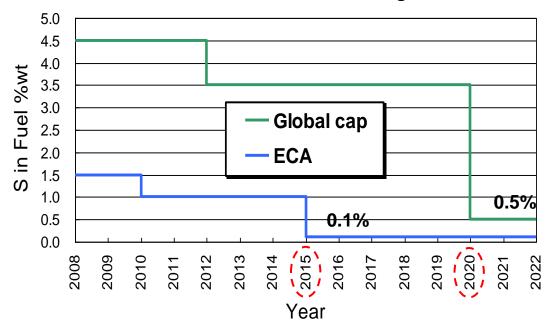
Map - ECAs fixed

Source: "Understanding exhaust gas treatment systems", LRS

ECAs fixed (existing and coming)

ECA (Annex VI: Prevention of air pollution by ships)	In Effect From
Baltic Sea (SOx)	19 May 2006
North Sea (SOx)	22 Nov 2007
North America (SOx and NOx)	1 Aug 2012 (NOx from 2016)
United States Caribbean Sea ECA (SOx and NOx)	1 Jan 2014 (NOx from 2016)

SOx



Regulation 14 of MARPOL Annex VI

Sulfur content limit in Fuel

- 0.5%wt Globally, 2020*
 * Availability of low S fuel will be reviewed by 2018. (If postponed, 2025.)
- 0.1%wt in ECA, 2015

S limit - MARPOL Annex VI, Reg 14

- ✓ Applied to both new and existing ships
- √ High degree of reduction
- √ Maker to develop technology
- ✓ Shipowner to make decision

Solutions for SOx regulation

6

What solutions are applicable?

♦ Use of Low Sulfur Fuel

- CAPEX is negligible, but OPEX will increase considerably.
- Availability of such low sulfur bunker fuels if refinery industry will be prepared?
- Poor ignition? may damage combustion chamber

SOx Scrubber

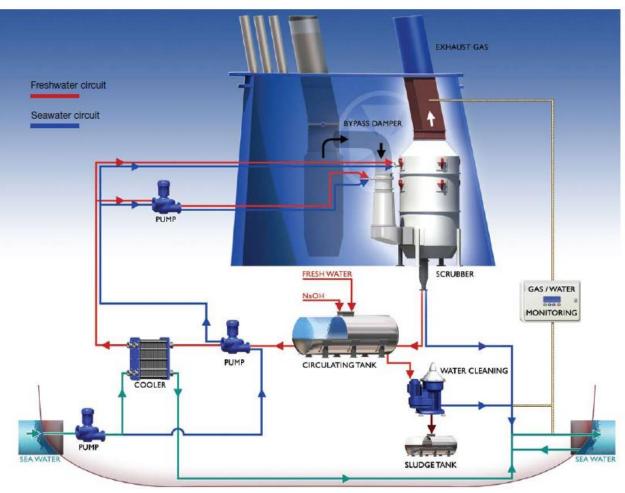
- Enables the existing propulsion system burning high sulfur heavy fuel oil.
- Manufacturers claim that payback time of SOx scrubber installation will be a few years and that the ship operators will obtain economical advantages against use of low sulfur fuels.
- Turbine back pressure acceptable?

◆ LNG-fuelled Vessels

- No SOx emission and less CO2/NOx emission.
- Design standards of vessels?
- Infrastructure and supply-chain?
- Building cost increase and safe operation of LNG-fuelled vessels?
- > LNG fuel price in future?

Wet SOx Scrubbers

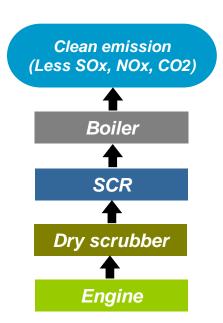
Open-loop type

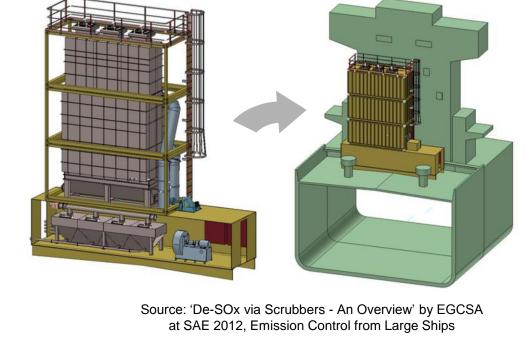

Operated by seawater

Closed-loop type

- Operated by circulating fresh water added with NaOH
- Essential in low alkalinity waters such as inland rivers.

Hybrid type

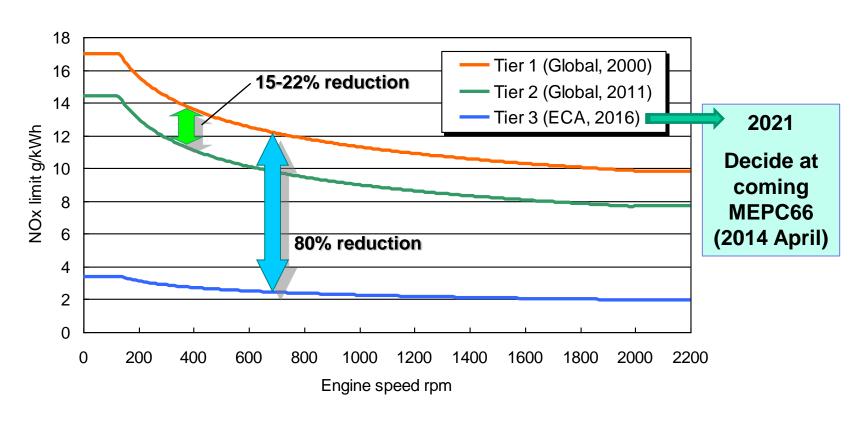

Possible in either mode of open-loop or closed-loop.



Typical configuration of EGCS with "Hybrid" wet scrubber Source: Alfa Laval's PureSOx catalogue

Dry SOx Scrubber

- uses dry chemical such as Ca(OH)₂
- Hot process, i.e. Large system
- Good combination with SCR



Source: 'Reederei Rord Braren, Kollmar, Germany' by Reederei Rord Braren at SAE 2012, Emission Control from Large Ships

NOx

NOx limit - MARPOL Annex VI, Reg 13

- Tier 1: Low NOx atomizer, injection retard,,,
- Tier 2: Miller cycle,,,
- Tier 3: ??? (Existing engine technology not enough)

11

Besides NOx, consider also...

EEDI (less CO2, i.e. less FOC)

Fuel flexibility (High S with SOx scrubber)

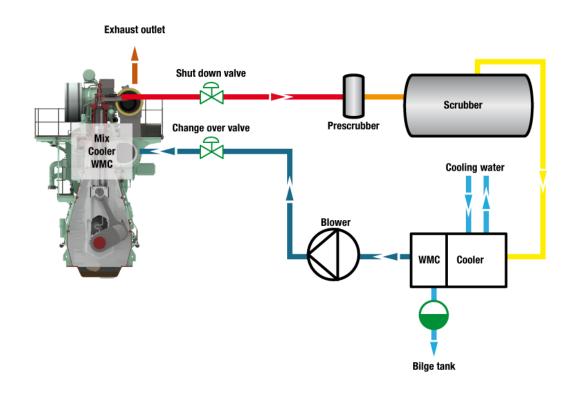
Cost (CAPEX and OPEX)

Less space

Availability of consumables

What is used for aux. engines?

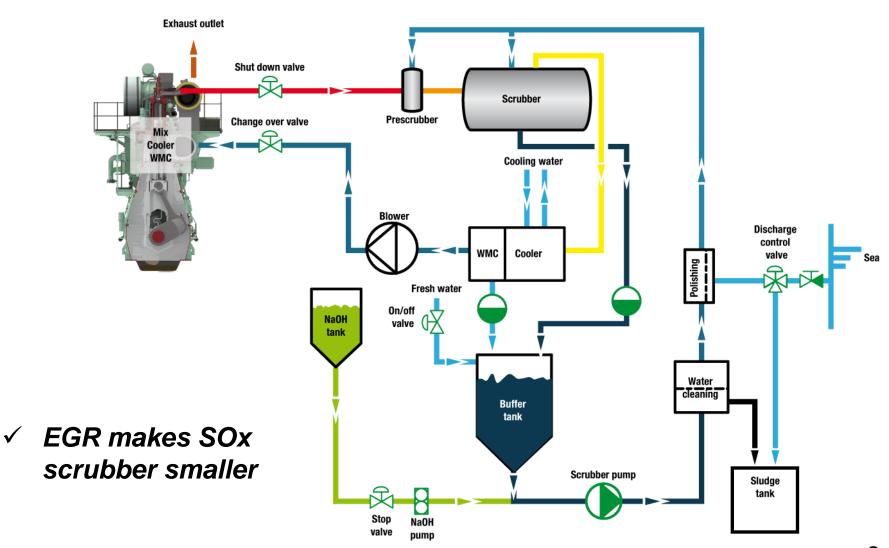




EGR

Exhaust Gas Recirculation

- Recirculating a part of exh. gas as scav. air
 - More CO2 higher specific heat capacity
 - Less O2 slower combustion
 - Lower combustion temperature less NOx
- A method related with combustion process



Source: MDT

EGR system layout with auxiliary systems

15

Source: MDT

Tier III operation cost of 4T50ME-X with EGR1 - MDT

16

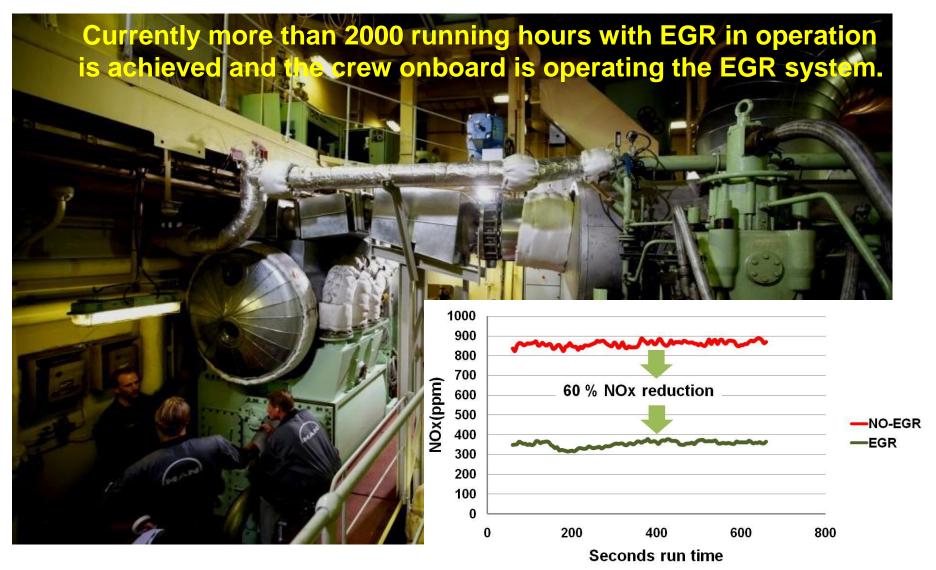
What does it cost:

SFOC penalty: 0.5 - 1.0 % (+2 g/kWh for S80ME-C-EGR2)

with fuel-saving measures

Additionally aux. power: 1.0 - 1.5 % of M/E power

NaOH consumption: 5 I/MWh (3%S, 50% solution)

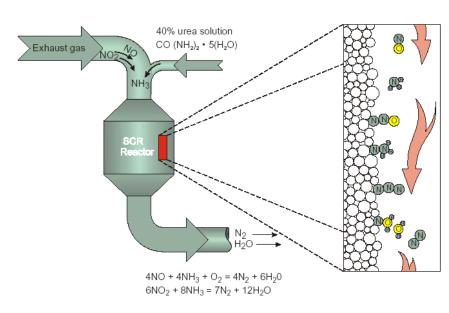

Source: MDT

EGR Service Test on Alexander Maersk 7S50MC-C with 3% sulphur HFO

17

18

- EGR shop test October 2012
- EGR test run on Sea-trial January 2013
- EGR Commissioning trial Marts 2013
- Approximately 700 EGR operational hours
- Only minor problem experienced
- Operated by Crew
- No influence on engine components



SCR

Selective Catalytic Reduction

- A conventional/proven method for stationary plants
- More than 90% NOx reduction possible
- Not conventional for ships, especially for 2-strokes
- After-treatment, regardless of combustion process
 i.e. free from 'Diesel Dilemma'
- NOx --> nitrogen and water:
 - 4NO + 4NH3 + O2 --> 4N2 + 6H2O (Major)
 - 6NO2 + 8NH3 --> 7N2 + 12H2O (Minor)
 - NO + NO2 + 2NH3 --> 2N2 + 3H2O (Fast)
- Urea as reducing agent
 - > (NH2)2CO --> NH3 + HCNO
 - HCNO + H2O --> NH3 + CO2

FAQ: "SCR before or after?"

SCR after turbine 'Low Press SCR'

Low pressure

Low temp

Gas temp: 210 - 280 degC

SCR needs: 300 - 350 degC

SCR before turbine 'High Press SCR'

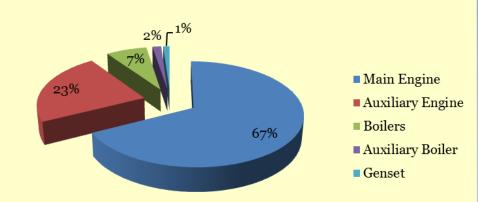
High pressure

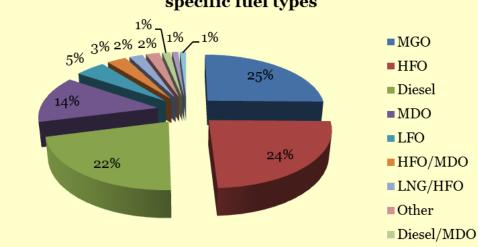
More active --> Compact

High temp

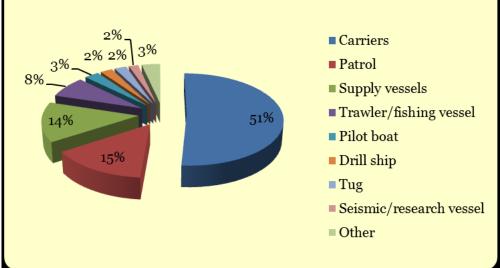
Gas temp: 290 - 430 degC--> No heating, low CO2

e.g. Burner = $100 \text{ C } \times 1 \text{ kJ/kg K } \times 10 \text{ kg/kWh} / 42700 \text{ kJ/kg} = 23 \text{ g/kWh} ??$

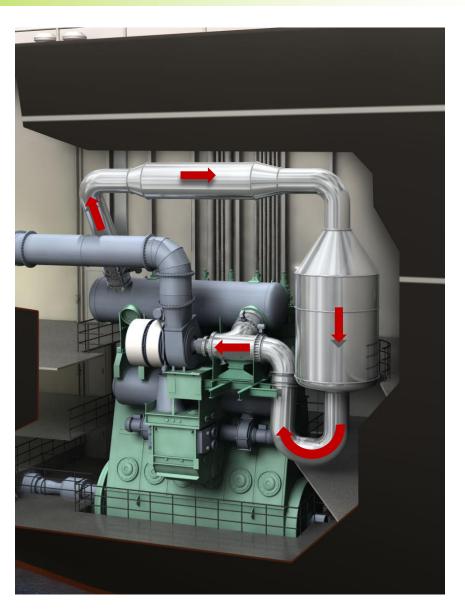



IACCSEA Database – Analysis

=	Ship Owner Operator	Ship Name	s	Ship Type		el Engine N	Model Engine power (per engine)	NOx Redux 1	ech Date of installation		Field of Application	Engine Manufacturer		
	HH-Ferries A/S	Mercandia VIII	RoPax			NTA-855-G	, ,	es scr		1987		Cummins		
	USS-POSCO	M/V Pacific Success	Cargo			2stroke		.9 SCR			Main	Comming		
	USS-POSCO	M/V Pittsburg	Cargo			2stroke		9 SCR			Main			
	HH-Ferries	Mervandia IV	RoPax			NTA-855-G	2 2	95 SCR		1989		Cummins		
	Scandinavian Ferry Line	Aurora	Ferry Line		Diesel			SCR		1991		Wärtsilä		
	Scandinavian Ferry Line				Diesel			SCR, OXI			Main engine	Wartsila		
	USS-POSCO USS-POSCO	M/V Delta Pride M/V New Horizon	Cargo		़	2stroke 2stroke		9 SCR 9 SCR			Main Main			
_	USS-PUSCO	Aurora of Helsingbor	Cargo Passenge	/5	MDO	WV6R32		SCR, OXI			Main NA	Wärtsilä		
-	National Maritime Administr			e Breaker	Diesel	WYORSZ		SCR, UKI		1994		SAAB, Hedem.		
_			oupp. II	e or cone.	D.C.S.C.			-				arota, medemi		
1	National Maritime Administr	ration (Sweden?)			Diesel			SCR. CIXI		199/	Main and aux	eng 2 SAAB, 1 Hedem		
1	Silia Line	M/S Serenade	Ferry		Diesei	4stroke		3 SCR		1994	Aux	ing a sirvey, a recount		
	Silia Line 50	2 Atlantic Offshore (S	artor)	Ocean Respo	nce	AHTS			1500	SCR			1012	Wartsila
1	UK Royal Navy 50	B Eggesbø JB		Eros		Fishing vessel		8M32C	4000	SCR			1012	Cat
1	Nils Dacke - TT-I 50	4 Saevik K		Kings Bay		Fishing vessel		8M32C	4000	SCR			1012	Cat
11	Great Lakes Dr	5 Larvik Shipping		Yara Embla		General Cargo Ship		6M25	1900				1012	MAK
-		6 Larvik Shipping		Yara Froya		General Cargo Shi		6M25	1900		_		1012	MAK
							p		1900		_			
		7 Solvtrans rederi as		Sølvtrans		Boat)		C25:33A					1012	BE
	AFEA 70	8 KBV (Swedish Coast		KBV 033		Patrol Vessel	_	16V2000M60		SCR	_		1012	MTU
2		9 KBV (Swedish Coast	Guard)	KBV 034		Patrol Vessel		16V2000M60		SCR			1012	MTU
2:	51	0 Island Offshore		Island Conte	nder	PSV		C25:33L6P	2000	SCR			1012	BE
2		1 Island Offshore		Island Crusac	ler	PSV		C25:33L6P	2000	SCR			012	BE
	Viking Line 51	2 Atlantic Offshore (S	artor)	Ocean Pride		PSV		3512C	1765	SCR			012	Cat
_ 2		3 Sjoborg Supply (PF S		Torsborg		PSV		12V4000M33S	1560	SCR			1012	MTU
		4 Hull 110		Vestland Mir		PSV		3512C	1800				1012	Cat
		5 Administration		Utvær				3516TA	1900		_		1012	Cat
		6 Fiskebas AS				Special purpose	_	C25-33L9P	2880		_			BE
				Fiskebas		Fishing vessel	_				_		1013	
		7 Island Offshore		STX Brevik H-		PSV		C25:33L6P	2000		_		1013	BE
		8 Troms Offshore		Troms Sirius		PSV		3512C	1800				1013	Cat
	51	9 Administration		Skomvær		Special purpose		3516TA	1900	SCR			1013	Cat
1.7	lore	0.		t) en		Purse Seiner	ssel		_	SCR		- 4	Main	
•	IOVO			ano		5 00 0 00 U	COL	10m U16V 700 17	6 1	AR A	\sim	LA/I+b		MTU
u i				C to tom		W Con			VIVII	CB		vvili		
-	52	3 Royal Danish Navy		- A		6 Patrol Vessels		2 x MTU 2040 kW	2 2040 kW		_			MTU
	52			Carrier M/V N		0.000.7633613	MGO - MDO	E 2 III J 2040 KW	3606 - 2030 kW	cco	_			Cateroilla


SCR systems per field of application

Number of SCR installed vessels using specific fuel types


Number of various types of vessels with SCR

SCR-engine – SCR in use on 2 stroke engine

 Exhaust gas flows to the SCR reactor

23

6S46MC-C-SCR on testbed

Reactor contain. catalysts & soot blower

Vaporizer & urea injection nozzle

Urea injection unit

24

tanks

Air compressor & air

Urea solution tanks

- The same arrangement engine, reactor, vaporizer, duct, fixation, ...
 - Proved on the test-bed
 - Made the sea trial trouble-less

SCR in engine room

SCR on test-bed

Tier III operation cost of high pressure SCR

26

What does it cost:

SFOC penalty: Negligible (1% only at low load, Nil at other loads)

without any fuel-saving measure

After-burner expense: Nil

Urea consumption: 16 I/MWh (40% solution, deNOx 14.4 --> 3.4 g/kWh)

Summary

NOx reduction

- > EGR can meet Tier 3
- SCR can meet Tier 3

Cost

> CAPEX: SCR < EGR

> OPEX: EGR < SCR

Total: depending on time for sailing in ECA

Size

EGR: EGR2 integrated on engine (except auxiliary systems)

SCR: Compact SCR investigation ongoing

29

FAQ: "Which is available in 2016?"

Ans.: "Both are available"

New Question: "Which way to go after Tier III?"

Consider:

- More NOx reduction required in future?
- More CO2 reduction required in future?
- > Gas?
- Who consumes HFO?
- Which way are auxiliary engines going?

