

Preliminary Consequence Assessment on Harmonized CSR from Chinese Shipbuilding Industry

Zhang Fan China Association of the National Shipbuilding Industry (CANSI)

- Background
- Assessment ships
- Assessment scope
- Assessment tools
- Preliminary results presentation
- Conclusions

- To provide a comprehensive consequence assessment result to the Chinese shipbuilding industry
- Members from CANSI
- Support by CCS
- CSRH External Release 1 July 2012

CA Ships

	L _{BP}	В	D	Ts	DWT
VLCC	320	60	30.5	22.5	320K
Suezmax	264	48	24	17.5	160K
Aframax	234	42	21.6	15.45	110K
Panamax	220	32.26	21.2	14.7	76K
MR	176	32.2	18.6	12.4	48K
Capesize1	294	50	24.9	18.4	206K
Capesize2	285	46	24.8	18.1	180K
Baby Cape	254	43	20.3	14.5	118K
Post Panamax	221	36.8	19.9	14.2	87K
Panamax	225.1	32.26	20.2	14.45	82K
Handymax1	185	32.26	18	12.8	57K
Handymax2	172	30	14.7	10.1	35K

2012-11-22

CA Scope

Midship region of cargo

- ➢ 0.4L amidships for tankers
- Empty hold & loaded hold in 0.4L amidships for bulk carriers
- Hull girder bending strength
- Minimum thickness
- Slenderness or proportional ratio
- Hull local scantling
- Prescriptive buckling
- Simplified Fatigue
- FE yielding
- FE buckling

CCS software system for CSRH

- > SDP
- > DSA

- Rule reference: External Release 1 July 2012
- Plating: Difference in thickness, [mm]
 - Shown as CSRH-CSR, for Rule to Rule comparison
 - Shown as CSRH-As_built, for real increase or decrease
- Stiffeners: Difference on modulus, shown as percentage calculated as
 - (CSRH-CSR)/CSR, for Rule to Rule comparison, [%]
 - (CSRH-As_built)/As_built, for real increase or decrease, [%]

Prescriptive result presentation

Local Min T	→ +/-
Local Pres.	→ +/-
Local Bilge	→ +/-
Local GRAB	→ +/-
Local Steel coils	→ +/-
HG Buckling	→ CSRH η>1.0
Pres. Buckling	→ CSRH η>1.0
Fatigue	→ CSRH T _F <25

Prescriptive result - OT 320K VLCC, Plating

CSRH to As-built

[mm]

Prescriptive result - OT 320K VLCC, Stiffener

CSRH to As-built [%]

10

Prescriptive result - OT 160K Suezmax, Plating

2012-11-22

Prescriptive result - OT 110K Aframax, Plating

CSRH to As-built

[mm]

Prescriptive result - OT 110K Aframax, Stiffener

CSRH to As-built [%]

Prescriptive result - OT 76K Panamax, Plating

+0.5

CSRH to As-built

 ∇

 ∇

+0.5

+0.5

2012-11-22

 $+1.0 \Delta +0.5 \Delta +0.5 \Delta +0.5 \Delta +0.5 \Delta$

MARIC,CSSC

Δ

Δ

Δ

Prescriptive result - OT 76K Panamax, Stiffener

2012-11-22

Prescriptive result - OT 48K Handymax, Plating

CSRH to CSR [mm]

CSRH to As-built

[mm]

Prescriptive result - OT 48K Handymax, Stiffener

CSRH to CSR [%]

CSRH to As-built [%]

2012-11-22

- For all tankers, scantling of keel plating, sheer strake & horizontal girder in wing ballast tank, increase due to minimum thickness requirement.
- For some tankers (Suezmax), scantling of inner bottom and side shell, increase due to minimum thickness requirement.
- Scantling of the tank boundaries will increase about 0.5~1.0mm due to the increased local pressure (e.g. P_{valve} considered in Dynamic condition).

- Requirement for the stiffener modulus increase a lot.
 However, the offered scantling should increase a little.
- Scantling of the stiffeners on tank boundaries increase, due to the increased local pressure (e.g. P_{valve} considered in Dynamic condition).
- The buckling utilization factor of stiffeners on deck and within 0.1D below deck at side increase, due to hull girder buckling requirement.

- No change to the scantlings of the CSR ships
- FEA is for the following members
 - Longitudinal structural members
 - > PSM in the midship region
 - Members for transverse bulkhead
- Yielding: FE results are plotted showing the yielding utilization factor beyond 0.7.
- Buckling: FE results are plotted showing the buckling utilization factor beyond 0.7.

FE results: OT-320K VLCC (1/5)

2012-11-22

FE results: OT-320K VLCC (2/5)

FE results: OT-320K VLCC (3/5)

FE results: OT-320K VLCC (4/5)

FE results: OT-320K VLCC (5/5)

- For FE buckling, the utilization factor of very local area not meet the requirement of CSRH.
- For FE yielding, the main members which stress beyond CSRH criteria: face plates of PSM
 - Increased internal pressure of tanks
 - Permissible stresses of higher tensile steel
- In general, the offered scantlings of VLCC comply with CSRH

Prescriptive result BC-206K Capesize, Plating (1/2)

2012-11-22

Prescriptive result BC-206K Capesize, Plating (2/2)

2012-11-22

Prescriptive result BC-206K Capesize, Stiffeners (1/2)

2012-11-22

Prescriptive result BC-206K Capesize, Stiffeners (2/2)

Prescriptive result BC-118K Baby Cape, Plating (1/2)

2012-11-22

Prescriptive result BC-118K Baby Cape, Plating (2/2)

2012-11-22

Prescriptive result BC-118K Baby Cape, Stiffeners (1/2)

Prescriptive result BC-118K Baby Cape, Stiffeners (2/2)

Prescriptive result BC-57K Handymax, Plating (1/2)

Prescriptive result BC-57K Handymax, Plating (2/2)

2012-11-22

Prescriptive result BC-57K Handymax, Stiffeners (1/2)

Prescriptive result BC-57K Handymax, Stiffeners (2/2)

- Double bottom girder, due to minimum thickness requirement:
 - Centre girder, 1.5~3.0mm
 - Other girder, 1.0mm

However, maybe little impact on the real scantling.

- Side shell in the quay contact region decrease 0.5mm.
 Serious buckling occurs for the single side shell.
- Grab[40]: > 70,000 dwt, the thickness of inner bottom, hopper & the lower stool side plate of T.BHD increase remarkably. (up to 4.5mm)

- Requirement for the longitudinal modulus increase a lot.
- Fatigue of the longitudinals on the deck and within 0.1D below deck at side, dose not meet the requirement of CSRH generally.
- Buckling of topside tank sloping plating longitudinals: requirement of CSRH is more rigorous than that of CSR.

FE results: BC-82K Panamax (1/4)

FE results: BC-82K Panamax (2/4)

FE results: BC-82K Panamax (3/4)

FE results: BC-82K Panamax (4/4)

- FE buckling of CSRH makes a great impact on BC.
 - Single side shell
 - Topside tank web
 - Topside tank sloping plating
 - Corrugated trans. bhd
- FE yielding of CSRH makes a little impact on BC.
- The FE model of CSR-BC to be modified according to the modeling requirement of CSRH, such as deleting the openings and so on.

• Weight increase estimation for Oil tankers is as follows:

[Unit : ton]

	VLCC	Suezmax	Aframax	Panamax	Handymax
Weight Increase	+71	+22	+31	+15	+15
(Preliminary)	(1.2%)	(0.8%)	(1.9%)	(1.0%)	(1.6%)

Note: Only one cargo tank in amidship, including one W.T. Trans. BHD

• Weight increase estimation for Bulk carriers does not carried out due to a lot of items "in progress".

- By our preliminary CA, it is found that:
 - Increase of scantlings due to prescriptive requirement is higher than that due to FE yielding.
 - The impact of CSRH on Bulk Carriers is greater than that on Oil Tankers.
- Some findings during IACS CA or industry review are to be paid more attention, especially for Bulk Carriers:
 - Buckling issues, e.g. for single side shell
 - Fatigue issues, e.g. for longitudinal end connections in the region of upper deck and 0.1D below
 - GRAB [40] too strict, GRAB [25] acceptable
 - Impact of Harbour condition on local scantlings

- For the next, we Chinese industry will investigate the mentioned findings and pay more attention to the CA for outside midship, but the followings should be guaranteed:
 - 13 "in progress" items to be finished, especially for fatigue and direct strength analysis
 - Provision of sufficient software tool, especially for FE analysis for cargo areas outside 0.4L region, hot spot fatigue evaluation, fatigue screening assessment
 - Enough period for external review (the current schedule is found to be insufficient, especially the 2nd external review!)

Thank You for Your Attention!