

Recent Development of Ballast Water Treatment Technologies (2nd ASEF)

12th, November 2008.

Hyundai Heavy Industries Co., Ltd. Korea

2004 IMO BWM Convention

- International Convention for the Control and Management of Ship' Ballast Water and Sediments, 9 ~ 13 February 2004.
 - To prevent the potential devastating effects of harmful aquatic organisms
 - Require Ballast Water and Sediments Management Plan
 - Ballast Water Record Book
 - Ballast Water Management Procedure : Exchange and Performance standard

Oppetrusted	BW Capacity	Year									
CONSTRUCTED		08	09	10	11	12	13	14	15	16	17
Before 08'	< 1,500 m ³		BWES or BWPS								
	1,500 ~ 5,000 m ³		BWES or BWPS						BWPS		
	\geq 5,000 m ³										
09 ' ~ 11'	< 5,000 m ³				BWP	S					
	\geq 5,000 m ³										
After 12 [']	All					BWP	S				

- Ships constructed in 2009 \rightarrow not later than 31 Dec 2011 (IMO Assembly in Nov 2007, IMO Resolution A. 1005(25))

Ballast Water Management Procedure

• Exchange Standard

	Exchange	Standard				
Volume	Volumetric Efficiency	at least 95%				
	Pumping-Through	3 times volume				
Area	Whenever possible	200 miles land, 200 metres depth				
	In case unable	200 miles land, 50 metres depth				
	Does not meet	Designated area by port State				

Performance Standard

	Organisms	Standard				
Organisms	\geq 50 μ m min.Dim.	less than 10/m ³ viable				
	10,µm-50,µm min.Dim.	less than 10/ml viable				
Indicator Microbes	Vibrio Cholereae	1cfu/100ml 1cfu/1g (wet weight)				
	Escherichia coli	250cfu/100ml				
	Intestinal <i>Enterococci</i>	100cfu/100ml				

- **1.** The most difficult and complex IMO instrument ever adopted.
- 2. Ratification : 30 countries representing over 35% of world tonnage.
 - As at 25 July 2008, 14 countries comprising 3.55% of world tonnage.
 - As of Oct. 2008, 16 countries representing 14.24% of world tonnage.
 - Existing ships will be required to do the same, but after phase-in period.
- 3. **35% of gross tonnage would be more difficult due to;**
 - Unclear Guidelines
 - Limitation of cost effective viable technologies to treat ballast Water.
- 4. For the Development of Guidelines, concerns expressed;
 - Need for transparent type approval process
 - A single universe procedure needed to remove uncertainty to ships that their systems on board would meet the requirements of all ports.

2004 IMO BWM Guidelines

G8 Type Approval (MEPC 53, 58)G9 Active Substance Approval (MEPC 53, 57)G10 Technology Program Approval (MEPC 54)

(MEPC 58)G2 Sampling

(MEPC 56) G7 Risk Assessment

(MEPC 56) G13 Additional Measures

(MEPC 55) G14 Designation of Exchange Area

(MEPC 53) G3 Equivalent Compliance G4 Management Plan G6 Exchange G11 Design & Construction G12 Sediment Control on Ships (MEPC 55) G1 Sediment Reception Facility G5 BW Reception Facility

- 1. For Ship owners;
 - Follow laws, regulations, guidelines and instructions
 - Construction ship in line with the Convention
 - Equip new and existing ships with type approved BWMS
 - Prepare BW management plan and maintain Ballast water record book....
- 2. For Ship designers, Ship builders and Classes;
 - Follow G6 for BW exchange in designing and building ships
 - Follow G11 for BW exchange design and construction standards
 - Follow G12 on design and construction to facilitate sediment control on ships
 - Equip new ships with BWMS

Ballast Water Treatment Technologies

IMO Globallast (2003.5) Review

IMO MEPC 53 (2005.7) Review

IMO MEPC 55 (2006.10) Review

Lloyd's Register (2008.9) Review

PSPC : Performance Standard for Protective Coatings Tanks in conflict , Solutions and Newbuildings – Magazine, Fairplay, 07 Jun 2007

Procedure for BWTS Approval

HHI – Building a better future Global Leader

BWTS IMO Approved System

Basic	Developer		Technology	Final Approval
MEPC 54 ('06.3)	Korea	Techcross	① Electrochemical(10 ^{mg} / <i>l</i>)	MEPC58
	Roroa		(2) Neutralization	('08.10)
	Cormony	Hamann	① Hydrocyclone/Filter	MEPC57
	Germany		② PERACLEAN(150mg/l)	('08.3)
MEPC 55	Japan	Mitsui	① Filter ② Special Pipe (Cavitation)	
			③ Ozone(4 ^{mg} /l)	
(106.10)	• •	Permascand	① Filter	DIVO
	Sweden		2 Electrochemical (TRO $2^{mg}/l$)	RWO
MEPC 56	Korea	NK	(1) Ozone $(2.5 \text{ mg/} l)$	
('07.7)	Norway	Alfa Laval		MEPC56
			(1) Filter , (2) AOT	('07.7)
	Korea	Pan Asia	① Filter ,② UV	
MEDC 57	Japan	Hitachi	(1) Pre-Cogulation	
('08.3)			2 Magnetic Separation 3 Filter	
	South Africa	RBT	① Filter ② Electrolysis ③ Cavitation	
	Norway	OceanSaver	(1) Filter (2) Cavitation	MEPC58
			③ Electrochemical (TRO 2.5 mg/l) ④ Deoxygenation	('08.10)
	Japan	Toagosei	① Filter ② Chlorination (FAC 30 ^{mg} / <i>l</i>)	
MEPC 58 ('08.10)			③ Neutralization (SS22mg/l)	
	Nathaulauda	GreenShip	1 Hydrocyclone	
	ivetneriands		② Electrochemical (FAC 3-10 ^{mg} / <i>l</i>)	
	Germany	Ecochor	① Filter ,② Chlorine Dioxide (5㎜/ℓ)	

• Type approved system: Alfa Laval, Hamman AG, NEI, and others

Source : KORDI

Ozone Treatment

Ballast Water Treatment System

Mitsui: fiter+03+Special pipe

- Different O_3 concentration due to different water qualities
- Good killing performance
- Bromate formation; 03
 leakage : Safety
- Neutralization unit

Oxygen

Generator

O2 Receiver

Tank

Ozone Generator

Strainer

High

Sea Chest

Seawater Electrolysis

Techross : Direct electrolysis

OceanSaver : Filter + Cavitation + ID electrolysis

- Good performance
- Different TRO control with additional equipment
- Life time and scale control of electrolyzer
- Neutralization unit
- H₂ gas removal equipment

HHI: EcoBallast

Filter + UV

- True environment-friendly solution
- Sediment control
- No residuals
- Life time of UV lamp
- Ballasting and deballasting, power consumption
- Small increase of Pump Head

Deoxygenation

D0 : 0.7 ppm

- Performance only with Deoxygenation (?)
- Maybe suitable for VLCC or LNG which already equipped with inert gas (N₂) generator
- Protection of corrosion (?)

OceanSaver : Filter + IG Cavitation + ID electrolysis

Chemicals

Hamman AG: Peraclean (150ppm)

- Needs specific chemicals
- Some system has filter or cyclone
- Chemical supply and storage tank

Corrosion

• Seawater Electrolysis

Over a typical lifetime, exposure to hypochlorite at a concentration of 10 mg/l Total Residual Chlorine will not significantly increase ballast tank corrosion. (MICHIGAN ENVIRONMENTI SCIENCE BOARD)

Seawater Seawater+20mg/I NaClO

Photo 6 Tar epoxy painted test pieces (after 340 days) Seawater

Seawater+ 20mg/I NaClO

Photo 7 Denatured epoxy painted test pieces (after 340 days)

Over 340 days test with 7 days wet and 3 days dry, 20 ppm NaOCI, has no effect on painted steel and galvanized steel except for decolorization.

Source : JEF

Corrosion

• Chemicals

Figure 4.18(b): ASTM Score vs. Exposure (Average across all Coatings), 35 ppt Salt Water

Figure 4.34(b): ASTM Score vs. Exposure (Average across all Coatings), 35 ppt Salt Water

Deoxygenation

BMT Corrosion Rate Testing - 270 Days

Up to 85 % Lower Corrosion

Source : NEI

TREATED

UNTREATED

Final technology decision(?)

In the Lloyd's Register's "Ballast Water treatment Technology, Current status, September, 2008"---

Deoxygenation

- Specially design for BWTS
- Voyage length (1 \sim 4 days) is a factor in process efficacy
- Relatively simple device if an IG generator is already installed
- Chemicals
 - needs (Peraclean, Seakleen, Chlorine dioxide) chemicals supply facility in ports
 - Power is very low and chemical costs will be a factor

Electrolysis and Ozone

- 2 mg/l residual chlorine is effective
- Ozone dose of 1 ~ 2 mg/L is effective
- Most have neutralizaton system
- Electrolysis systme is the most complex system
- □ Filter + UV
 - Most UV system use medium pressure UV lamp
 - The water quality would be important factor
 - The least complex system to operate

Final technology decision

	Ozone	Electrolysis	Filter + UV	Deoxygenation	Chemicals
Principle	03	NaOCI	UV	Low DO	-
Additional piping works, footprint	0	0	0	0	
Increase of pump head	0	0	0	0	
Filtrate disposal		◎, ▲	0		
Safety	O	0			O
Corrosion	O	0			0, ()
Installation cost	O	0	0	0	
Operation cost	0	0	0	0	O
Performance			0	◎, ▲	

 \odot important factor, \bigcirc reasonable, \blacktriangle not important (no problem)

Still difficult to decide

HHI's UV-Technology : EcoBallast

HHI's UV-Technology : EcoBallast

> 20 MP-UV lamps with treatment capacity more than 1,000m³/hr

UV reactor Inlet

Land-based test facility in HHI : 280 m³/hr

UV Lamp

Installation in Vessel

Horizontal Installation

Thanks for your attention

