Useful and Reliable Technology Automated Soluble Salt Measurement

Hidehisa Ashida Oshima Shipbuilding Co., LTD. (SAJ)

Outline of PSPC

- IMO Resolution MSC.215(82)
- Performance Standard for Protective Coatings for Dedicated Seawater Ballast Tanks in All type of ships and Double-Side Skin Spaces of Bulk Carriers : "PSPC for Ballast Tank"

- PSPC for Void space (Not mandatory)
- PSPC for PMA (Not mandatory)
- PSPC for Cargo Oil Tank will be discussed at DE52

Major Requirements by PSPC

for Ballast Tank

- Blasting for 2nd surface treatment
- Approved paint system
- Multi-coating
- 320 micron on DFT under 90/10 rule
- DFT to be measured at many points
- Edge treatment
- Soluble Salt Measurement
- Technical Data File(TDF) to be prepared (All result of inspection to be recorded)
- All measurements/inspection/recording to be carried out under certified inspector's responsibility

Impact for ship building business,

example:

- Additional Blasting facilities maybe required at many shipyards
- Thicker Paint thickness to be applied
- Painting time period to be extended
- Increase VOC
- Heavy Edge Treatment (Increase in consumables)
- Measuring points of DFT
- Measure the Soluble Salt, even if there is no risk to the block/steel plate, to be carried out by ISO8502-9/6

Soluble Salt Measurement

PSPC required:

Water soluble salts limit, equivalent to NaCl : 50 mg/m² of sodium chloride. Conductivity measured in accordance with ISO 8502-9:1998

Main Source of Soluble Salt during ship building process

- Sea Water (Splashed sea water, Atmosphere) Contents in Sea Water (for Example) : Weight Ratio NaCl:77.9%, MgCl2:9.6%, MgSO4:6.1%, CaSO4:4.0%, KCl:2.1%, Other:0.3%
- Air/Water Pollution (Atmosphere, Splashed river water) Representative chemical substance for Air Pollution
 NOx : HNO3,HNO2
 SOx : H2SO4,H2SO3,
 COx : H2CO3

Most Popular method of Soluble Salt measurement

• Kitagawa Chloride Detector Tube: Measures "Chlorine Ion"

• Electric Conductivity: "All Soluble Salt Ions"

Measures

Kitagawa Chloride Detector Tube: "Chlorine Ion"

Electric Conductivity: "All Soluble Salt Ions"

Process of ISO8502-9/6 called Patch Method "

- Method: Measure Electric Conductivity
- Apply Exclusive Conversion Ratio

"Bresle

Salt Concentration in Relation to Conductivity

ISO 8502-9 Figure 1

Automated ISO8502-9/6

Copied from ARP web site

Advantages

- Less human error
- Results are Reliable
- Less consumables
- Save measured value in the instrument

Use of **magnet** means **no glue** remains on metal surface (unlike Bresle Method)

Advantages

- Less human error
- Results are Reliable
- Less consumables
- Save measured value in the instrument
- No Glue will remain

Disadvantages

•Initial cost is expensive

•Measurement for curved part is difficult

Salinity Measurement Methods

ISO 8502-5

Ion detection tube method (wiping) ISO 8502-9/6 Bresle method (Soft Cell)

New method Rigid Cell method

Comparison of Measurement Methods

	Ion detection tube Method	Bresle Patch method ISO8502-9/6	Rigid cell method Automated ISO8502
Sampling	Wipe with gauze	Bresle Patch and injector	Fix to plate with powered stirring
Detection Method	Silver chromate method	Electric Conductivity method	Electric Conductivity method
Work Time	20 minutes.	10 minutes.	4 minutes.
Pure Water Consumption	150ml	10ml	10ml
Sampling Area	250000mm ²	1250mm ²	1250 mm ²
Measurement Calculation	• Cl ⁻ measurement using sensor tube • Calculate to NaCl concentration.	 Conductivity Measurement Calculate to NaCl concentration 	 Conductivity Measurement Convert to NaCl concentration by software
Consumables	Water, Tube,Gauze,Tape	Water, Patch	Water
			21

Action by Japan

Japan has submitted a paper to DE51 held on Feb. 2008 in Bonn titled "DE 51/14/2: GUIDELINES FOR MAINTENANCE AND REPAIR OF PROTECTIVE COATINGS Comments on the method of measuring the conductivity of soluble salts "

Action by NACE

NACE (National Association of Corrosion Engineer) is discussing about confirmation method of equivalency for ISO8502-9/6.

TG392: **MEASUREMENT OF SOLUBLE SALTS** ON MARINE SURFACES ASSIGNMENT: TO DEVELOP A **STANDARD** PROVIDING METHODS OF VALIDATING **EQUIVALENCE TO ISO 8502-6/9** ON MEASUREMENT OF THE LEVELS OF SOLUBLE SALT CONTAMINATION ON SURFACES OF MARINE STRUCTURES, INCLUDING SHIPS, BEFORE COATING APPLICATION

Proposal

• To keep/realize better environment condition by reducing VOC, CO2 and consumables, we must use ECO-Friendly methods.

Proposal

• All shipbuilding countries/ASEF, who have latest/modern technology, should cooperate with each other to accomplish the goals.

Proposal

To keep/realize better environment condition by reducing VOC, CO2 and consumables, we must use ECO-Friendly methods.

• All shipbuilding countries/ASEF, who have latest/modern technology, should cooperate with each other to accomplish the goals.

THANK YOU FOR YOUR KIND ATTENTION